The following node is available in the Open Source KNIME predictive analytics and data mining platform version 2.7.1. Discover over 1000 other nodes, as well as enterprise functionality at http://knime.com.
AODE achieves highly accurate classification by averaging over all of a small space of alternative naive-Bayes-like models that have weaker (and hence less detrimental) independence assumptions than naive Bayes. The resulting algorithm is computationally efficient while delivering highly accurate classification on many learning tasks. For more information, see G. Webb, J. Boughton, Z. Wang (2005). Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning. 58(1):5-24. Further papers are available at http://www.csse.monash.edu.au/~webb/. Can use an m-estimate for smoothing base probability estimates in place of the Laplace correction (via option -M). Default frequency limit set to 1.
(based on WEKA 3.6)
For further options, click the 'More' - button in the dialog.
All weka dialogs have a panel where you can specify classifier-specific parameters.
The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.
Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.
Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Missing values, Nominal class, Binary class, Missing class values] Dependencies: [] min # Instance: 0
D: Output debugging information
F: Impose a frequency limit for superParents (default is 1)
M: Use m-estimate instead of laplace correction
W: Specify a weight to use with m-estimate (default is 1)
0 | Training data |
0 | Trained classifier |