The following node is available in the Open Source KNIME predictive analytics and data mining platform version 2.7.1. Discover over 1000 other nodes, as well as enterprise functionality at http://knime.com.
A regression scheme that employs any classifier on a copy of the data that has the class attribute (equal-width) discretized. The predicted value is the expected value of the mean class value for each discretized interval (based on the predicted probabilities for each interval).
(based on WEKA 3.6)
For further options, click the 'More' - button in the dialog.
All weka dialogs have a panel where you can specify classifier-specific parameters.
The Preliminary Attribute Check tests the underlying classifier against the DataTable specification at the inport of the node. Columns that are compatible with the classifier are marked with a green 'ok'. Columns which are potentially not compatible are assigned a red error message.
Important: If a column is marked as 'incompatible', it does not necessarily mean that the classifier cannot be executed! Sometimes, the error message 'Cannot handle String class' simply means that no nominal values are available (yet). This may change during execution of the predecessor nodes.
Capabilities: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, Missing values, Numeric class, Date class, Missing class values] Dependencies: [Nominal attributes, Binary attributes, Unary attributes, Empty nominal attributes, Numeric attributes, Date attributes, String attributes, Relational attributes, Missing values, No class, Missing class values, Only multi-Instance data] min # Instance: 2
B: Number of bins for equal-width discretization (default 10).
E: Whether to delete empty bins after discretization (default false).
F: Use equal-frequency instead of equal-width discretization.
D: If set, classifier is run in debug mode and may output additional info to the console
W: Full name of base classifier. (default: weka.classifiers.trees.J48)
:
U: Use unpruned tree.
C: Set confidence threshold for pruning. (default 0.25)
M: Set minimum number of instances per leaf. (default 2)
R: Use reduced error pruning.
N: Set number of folds for reduced error pruning. One fold is used as pruning set. (default 3)
B: Use binary splits only.
S: Don't perform subtree raising.
L: Do not clean up after the tree has been built.
A: Laplace smoothing for predicted probabilities.
Q: Seed for random data shuffling (default 1).
0 | Training data |
0 | Trained classifier |