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Data Preparation
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Motivation

§ Real world data is “dirty“

à Contains missing values, noises, outliers, inconsistencies

§ Comes from different information sources

à Different attribute names, values expressed differently, related tuples

§ Different value ranges and hierarchies

à One attribute range may overpower another

§ Huge amount of data

à Makes analyis difficult and time consuming
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Data Preparation

§ Data Cleaning & Standardization (domain dependent)

§ Aggregations (often domain dependent)

§ Normalization

§ Dimensionality Reduction

§ Outlier Detection

§ Missing Value Imputation

§ Feature Selection

§ Feature Engineering

§ Sampling

§ Integration of multiple Data Sources
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Data Preparation:
Normalization
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Normalization: Motivation

Example: 

§ Lengths in cm (100 – 200) and weights in kilogram (30 – 150) fall both in approximately 
the same scale

§ What about lengths in m (1-2) and weights also in gram (30000 – 150000)?
à The weight values in mg dominate over the length values for the similarity of 
records!

Goal of normalization:

§ Transformation of attributes to make record ranges comparable
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Normalization: Techniques

§ min-max normalization

§ z-score normalization

§ normalization by decimal scaling

7
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Here [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] is [−1,1]



Data Preparation: 
Outlier Detection
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Outlier Detection

§ An outlier could be, for example, rare behavior, system defect, measurement error, or 
reaction to an unexpected event
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Outlier Detection: Motivation

§ Why finding outliers is important?
§ Summarize data by statistics that represent the majority of the data
§ Train a model that generalizes to new data
§ Finding the outliers can also be the focus of the analysis and not only data cleaning
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§ Knowledge-based

§ Statistics-based
§ Distance from the median 
§ Position in the distribution tails 
§ Distance to the closest cluster center
§ Error produced by an autoencoder
§ Number of random splits to isolate a data 

point 
from other data
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Outlier Detection Techniques
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Material

https://www.knime.com/blog/four-techniques-for-outlier-detection
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Data Preparation: 
Dimensionality Reduction
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Is there such a thing as “too much data”?

“Too much data”:

§ Consumes storage space

§ Eats up processing time

§ Is difficult to visualize

§ Inhibits ML algorithm performance

§ Beware of the model: Garbage in à Garbage out
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Dimensionality Reduction Techniques

§ Measure based
§ Ratio of missing values
§ Low variance
§ High Correlation

§ Transformation based
§ Principal Component Analysis (PCA)
§ Linear Discriminant Analysis (LDA)
§ t-SNE

§ Machine Learning based
§ Random Forest of shallow trees
§ Neural auto-encoder
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Missing Values Ratio

IF (% missing value > threshold  )      THEN remove column
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Low Variance

§ If column has constant value (variance = 0), it contains no useful information

§ In general: IF (variance < threshold )    THEN remove column
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Note: requires min-
max-normalization, 
and only works for 
numeric columns
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High Correlation

§ Two highly correlated input variables probably carry similar information

§ IF ( corr(var1, var2) >  threshold  ) => remove var1
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§ PCA is a statistical procedure that orthogonally transforms the 
original n coordinates of a data set into a new set of n coordinates, 
called principal components.

𝑃𝐶!, 𝑃𝐶", ⋯𝑃𝐶# = 𝑃𝐶𝐴 𝑋!, 𝑋", ⋯𝑋#

§ The first principal component 𝑃𝐶! follows the direction 
(eigenvector) of the largest possible variance (largest eigenvalue 
of the covariance matrix) in the data.

§ Each succeeding component 𝑃𝐶$ follows the direction of the next 
largest possible variance under the constraint that it is orthogonal 
to (i.e., uncorrelated with) the preceding components 
𝑃𝐶!, 𝑃𝐶", ⋯𝑃𝐶$%! .

If you’re still curious, there’s LOTS of different ways to think about PCA: 
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-
component-analysis-eigenvectors-eigenvalues
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Principal Component Analysis (PCA)

x1

x2

PC1

PC2

Image from Wikipedia

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Principal Component Analysis (PCA)

§ 𝑃𝐶! describes most of the variability in the data, 𝑃𝐶" adds the next big contribution, and 
so on. In the end, the last PCs do not bring much more information to describe the data.

§ Thus, to describe the data we could use only the top 𝑚 < 𝑛 (i.e., 𝑃𝐶!, 𝑃𝐶", ⋯𝑃𝐶#) 
components with little - if any - loss of information

§ Caveats:
§ Results of PCA are quite difficult to interpret
§ Normalization required
§ Only effective on numeric columns
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Dimensionality Reduction
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Linear Discriminant Analysis (LDA)

§ LDA is a statistical procedure that orthogonally transforms the original n coordinates of 
a data set into a new set of k-1 coordinates, called linear discriminants, where k is the 
number of classes in the class variable

𝐿𝐷', 𝐿𝐷), ⋯ 𝐿𝐷*"' = 𝐿𝐷𝐴 𝑋', 𝑋), ⋯𝑋&
§ Here, however, discriminants (components) 

maximize the separation between classes

§ PCA : unsupervised 

§ LDA : supervised
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Linear Discriminant Analysis (LDA)

§ 𝐿𝐷! describes best the class separation in the data, 𝐿𝐷" adds the next big contribution, 
and so on. In the end, the last LDs do not bring much more information to separate the 
classes.

§ Thus, for our classification problem we could use only the top 𝑚 < 𝑘 − 1 (i.e., 
𝐿𝐷!, 𝐿𝐷", ⋯ 𝐿𝐷#) discriminants with little - if any - loss of information

§ Caveats:
§ Results of LDA are quite difficult to interpret
§ Normalization required
§ Only effective on numeric columns
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Dimensionality Reduction
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§ Often used for classification, but can be used for feature 
selection too

§ Generate a large number (we used 2000) of trees that are 
very shallow (2 levels, 3 sampled features)

§ Calculate the statistics of candidates and selected features. 
The more often a feature is selected in such trees, the more 
likely it contains predictive information

§ Compare the same statistics with a forest of trees trained 
on a random dataset.
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Ensembles of Shallow Decision Trees
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Autoencoder

§ Feed-Forward Neural Network architecture 
with encoder / decoder structure. 
The network is trained to reproduce the 
input vector onto the output layer. 

§ That is, it compresses the input vector (dimension n) into a smaller vector space on layer 
“code” (dimension m<n) and then it reconstructs the original vector onto the output 
layer. 

§ If the network was trained well, the reconstruction operation happens with minimal loss 
of information.
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Image: Wikipedia



Data Preparation: 
Feature Selection
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Feature Selection vs. Dimensionality Reduction

§ Both methods are used for reducing the number of features in a dataset. However:

§ Feature selection is simply selecting and excluding given features without changing
them.

§ Dimensionality reduction might transform the features into a lower dimension.

§ Feature selection is often a somewhat more aggressive and more computationally 
expensive process.
§ Backward Feature Elimination
§ Forward Feature Construction
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Backward Feature Elimination (greedy top-down)

1. First train one model on n input features

2. Then train n separate models each on 𝑛 − 1 input features and remove the feature 
whose removal produced the least disturbance

3. Then train 𝑛 − 1 separate models each on 𝑛 − 2 input features and remove the feature 
whose removal produced the least disturbance

4. And so on. Continue until desired maximum error rate on training data is reached. 
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Backward Feature Elimination
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Forward Feature Construction (greedy bottom-up)

1. First, train n separate models on one single input feature and keep the feature that 
produces the best accuracy. 

2. Then, train 𝑛 − 1 separate models on 2 input features, the selected one and one more. 
At the end keep the additional feature that produces the best accuracy.

3. And so on … Continue until an acceptable error rate is reached.
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Material

https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/
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Data Preparation: 
Feature Engineering
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Feature Engineering: Motivation

Sometimes transforming the original data allows for better discrimination 
by ML algorithms.
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Feature Engineering: Techniques

§ Coordinate Transformations 
Remember PCA and LDA?
Polar coordinates , …

§ Distances to cluster centres, after data clustering

§ Simple math transformations on single columns 
(𝑒𝑥, 𝑥2, 𝑥3, tanh(𝑥), log(𝑥) , …)

§ Combining together multiple columns in math functions 
(𝑓(𝑥1, 𝑥2, … 𝑥𝑛), 𝑥2 – 𝑥1, …)

§ The whole process is domain dependent
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Feature Engineering in Time Series Analysis

§ Second order differences: 𝑦 = 𝑥(𝑡) – 𝑥(𝑡 − 1) & 𝑦‘(𝑡) = 𝑦(𝑡) – 𝑦(𝑡 − 1)
§ Logarithm: log(𝑦‘(𝑡))

38



Regression Problems

39



© 2023 KNIME AG. All rights reserved.

Supervised Learning: Classification vs. Regression

§ 𝑿 = (𝑥1, 𝑥2) and 𝑦 = {𝑙𝑎𝑏𝑒𝑙 1, … , 𝑙𝑎𝑏𝑒𝑙 𝑛} or 𝑦 ∈ ℝ
§ A training set with many examples of (𝑿, 𝑦)
§ The model learns on the examples of the training set to produce the right value of 𝑦 for 

an input vector 𝑿
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Classification
y = {yellow, gray}
y = {churn, no churn}
y = {increase, unchanged, decrease}
y = {blonde, gray, brown, red, black}
y = {job 1, job 2, ... , job n}

Numerical Predictions (Regression)
y = temperature
y = number of visitors
y = number of kW
y = price
y = number of hours
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Regression Overview

§ Goal: Explain how target attribute depends on descripitive attributes
§ Target attribute è Response variable
§ Descriptive attribute(s) è Regressor variable(s)

§ As a parameterized function class f
§ Estimate parameters to describe the 
relationship
§ Must be simple enough for interpolation and 
extrapolation purposes
§ Example:

Line (black) v.s. Polynomial (blue) with degree 7
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Applications
§ Forecasting
§ Quantitative Analysis

Methods
§ Linear
§ Polynomial
§ Regression Trees
§ Partial Least Squares

42

Predict numeric outcomes on existing data (supervised)

Regression



Linear Regression Algorithm
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Regression Line

§ Given a data set with two continuous attributes, 𝑥 and 𝑦
§ There is an approximate linear dependency between 𝑥 and 𝑦

44

𝑦 ≈ 𝑎 + 𝑏𝑥
Intercept Slope

x

y

Intercept 𝑎

1

𝑏 Slope
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Regression Line

§ Given a data set with two continuous attributes, 𝑥 and 𝑦
§ There is an approximate linear dependency between 𝑥 and 𝑦

§ We find a regression line (i.e., determine the parameters 𝑎 and 𝑏) such that the line fits 
the data as well as possible

§ Examples:
§ Trend estimation (e.g., oil price over time)
§ Epidemiology (e.g., cigarette smoking vs. lifespan)
§ Finance (e.g., return on investment vs. return on all risky assets)
§ Economics (e.g., spending vs. available income)
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𝑦 ≈ 𝑎 + 𝑏𝑥
Intercept Slope
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Linear Regression

Predicts the values of the target variable y
based on a linear combination of
the values of the input feature(s) xj

§ Simple regression: one input feature à regression line

§ Multiple regression: several input features à regression hyper-plane

§ Residuals: differences between observed and predicted values (errors)
Use the residuals to measure the model fit
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p input features: 9𝑦 = 𝑎( + 𝑎'𝑥' + 𝑎)𝑥) +⋯+ 𝑎+𝑥+

Two input features: 9𝑦 = 𝑎( + 𝑎'𝑥' + 𝑎)𝑥)



© 2023 KNIME AG. All rights reserved.

Simple Linear Regression

Optimization goal: minimize sum of squared residuals

47
x

y

9𝑦 =
 𝑎 (
+ 𝑎

'𝑥

Residual
ei

∑%,'& 𝑒%) = ∑%,'& 𝑦% − <𝑦% )

yi
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Simple Linear Regression

§ Think of a straight line G𝑦 = 𝑓 𝑥 = 𝑎 + 𝑏𝑥
§ Find 𝑎 and 𝑏 to model all observations (𝑥$, 𝑦$) as close as possible

è SSE 𝐹 𝑎, 𝑏 = ∑$%!& (𝑓 𝑥 − 𝑦$)" = ∑$%!& (𝑎 + 𝑏𝑥$ − 𝑦$)" should be minimal

§ That is:

𝜕𝐹
𝜕𝑎 =M

$%!

&

2 𝑎 + 𝑏𝑥$ − 𝑦$ = 0

𝜕𝐹
𝜕𝑏 =M

$%!

&

2 𝑎 + 𝑏𝑥$ − 𝑦$ 𝑥$ = 0

è A unique solution exists for 𝑎 and 𝑏
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Linear Regression

§ Optimization goal: minimize the squared residuals

§ Solution:

§ Computational issues:
§ 𝑋&𝑋 must have full rank, and thus be invertible 

(Problems arise if linear dependencies between input features exist)
§ Solution may be unstable, if input features are almost linearly dependent
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∑%,'& 𝑒%) = ∑%,'& 𝑦% − ∑-,(& 𝑎-𝑥-,%
) = 𝑦 − 𝑎𝑋 / 𝑦 − 𝑎𝑋

9𝑎 = 𝑋/𝑋 "'𝑋/𝑦
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Linear Regression: Summary

§ Positive:
§ Strong mathematical foundation
§ Simple to calculate and to understand

(For moderate number of dimensions)
§ High predictive accuracy

(In many applications)

§ Negative:
§ Many dependencies are non-linear

(Can be generalized)
§ Model is global and cannot adapt well to locally different data distributions

But: Locally weighted regression, CART
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§ Regression
§ Targets & set of input features
§ Describing the relationship between the 

target and input features
§ Model à interpolation

51

§ Time series analysis
§ Sequence of observations
§ Predicting future obs from

§ Existing time series

§ Accompanying time series

§ Model à extrapolation

Regression vs. Time Series Analysis

x

y

observed

predicted

time

y

observed

predicted
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Polynomial Regression

Predicts the values of the target variable y
based on a polynomial combination of degree d of

the values of the input feature(s) xj

§ Simple regression: one input feature à regression curve

§ Multiple regression: several input features à regression hypersurface

§ Residuals: differences between observed and predicted values (errors)
Use the residuals to measure the model fit
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ỹ = 𝑎( + ∑-,'
+ 𝑎-,'𝑥- + ∑-,'

+ 𝑎-,)𝑥-) +⋯+ ∑-,'
+ 𝑎-,0𝑥-0



Evaluation of Regression Models
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Numeric Errors: Formulas
Error Metric Formula Notes

R-squared
1 −

∑%&'( (𝑦%−𝑓(𝑥%)))

∑%&'( (𝑦%−𝑦))
Universal range: the closer to 1 the 
better

Mean absolute error (MAE) 1
𝑛0
%&'

(

|𝑦% − 𝑓(𝑥%)|
Equal weights to all distances
Same unit as the target column

Mean squared error (MSE) 1
𝑛0
%&'

(

(𝑦% − 𝑓(𝑥%)))
Common loss function

Root mean squared error (RMSE)
1
𝑛0
%&'

(

(𝑦% − 𝑓(𝑥%)))
Weights big differences more
Same unit as the target column

Mean signed difference 1
𝑛0
%&'

(

𝑦% − 𝑓 𝑥%
Only informative about the direction 
of the error

Mean absolute percentage error 
(MAPE)

1
𝑛0
%&'

(
|𝑦% − 𝑓(𝑥%)|

|𝑦%|

Requires non-zero target column 
values
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MAE (Mean Absolute Error) vs. RMSE (Root Mean Squared Error)

MAE RMSE

Easy to interpret – mean absolute error Cannot be directly interpreted as the average error

All errors are equally weighted Larger errors are weighted more

Generally smaller than RMSE Ideal when large deviations need to be avoided

MAE RMSE

Case 1 2.25 2.29

Case 2 3.25 3.64

Example:

Actual values = [2,4,5,8], 

Case 1: Predicted Values = [4, 6, 8, 10]

Case 2: Predicted Values = [4, 6, 8, 14]
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R-squared vs. RMSE

R-squared RMSE

Relative measure: 
Proportion of variability explained by the model

Absolute measure: 
How much deviation at each point

Range: Usually between 0 and 1.
0 = no variability explained 
1 = all variability explained

Same scale as the target

R-sq RMSE

Case 1 0.96 1.12

Case 2 0.65 1.32

Example:

Actual values = [2,4,5,8], 

Case 1: Predicted Values = [3, 4, 5, 6]

Case 2: Predicted Values = [3, 3, 7, 7]
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Numeric Scorer

§ Similar to scorer node, but for nodes with numeric predictions 

§ Compare dependent variable values to predicted values to evaluate model quality. 

§ Report R2, RMSE, MAPE, etc. 

57



Regression Tree
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Regression Tree: Goal

We want to model the target variable 
with piecewise lines
à No knowledge of functional form 
required

y

x
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Regression Tree: Initial Split

𝑐# =
1
𝑛M𝑦$

Local mean:

s

For observations in 
segment m

Sum of squared errors:

𝐸# =M 𝑦$ − 𝑐# "

For all segments m

Optimal boundary S should minimize 
the total squared sum:

M𝐸#

y

x
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Regression Tree: Initial Split

s

𝑥 ≤ 93.5?

𝐶! = 28.9 𝐶" = 17.8

Y N

y

x
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Regression Tree: Growing the Tree

s

𝑥 ≤ 93.5?

𝑥 ≤ 70.5? 𝐶! = 17.8

Y N

𝐶" = 33.9 𝐶# = 26.4

Y N

Repeat the splitting 
process within each 
segment

y

x
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Regression Tree: Final Model

y

x
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Regression Tree: Algorithm

Start with a single node containing all points. 

1. Calculate ci and Ei.
2. If all points have the same value for feature xj, stop. 

3. Otherwise, find the best binary splits that reduces Ej,s as much as possible. 
§ Ej,s doesn’t reduce as much à stop
§ A node contains less than the minimum node size à stop
§ Otherwise, take that split, creating two new nodes.
§ In each new node, go back to step 1.
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Regression Trees: Summary

§ Differences to decision trees:  
§ Splitting criterion: minimizing intra-subset variation (error)  
§ Pruning criterion: based on numeric error measure  
§ Leaf node predicts average target values of training instances reaching that node    

§ Can approximate piecewise constant functions  

§ Easy to interpret 
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Regression Trees: Pros & Cons

§ Finding of (local) regression values (average)

§ Problems:
§ No interpolation across borders
§ Heuristic algorithm: unstable and not optimal.

§ Extensions:
§ Fuzzy trees (better interpolation)
§ Local models for each leaf (linear, quadratic)

66
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Exercises

§ Dataset: Sales data of individual residential properties in Ames, Iowa from 2006 to 2010 

§ One of the columns is the price for which the house was sold

§ Goal: Predicting the house price

§ Data Preparation:
§ 01_Missing_Value_Handling
§ 02_Outlier_Detection

§ Regression:
§ 03_Linear_Regression
§ 04_Regression_Trees
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