{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "export" ] }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "from scipy.optimize import curve_fit" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "export" ] }, "outputs": [], "source": [ "path = 'knime://My-KNIME-Hub/Users/deganza/Public/covid19_Loglet_knime_jupyter_tableau/Data/covid_daten_knime.csv'\n", "df_country = pd.read_csv(path)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [ "export" ] }, "outputs": [], "source": [ "df_country_exp = pd.DataFrame()\n", "\n", "df_country_list = df_country.groupby(['Country']).last().reset_index()\n", "country_list = df_country_list['Country'].to_list()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "export" ] }, "outputs": [], "source": [ "#df_country_period = df_country[df_country['df_days'] <= 360]\n", "df_country_period = df_country\n", "zeilen = df_country_period['cases'].count()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ContinentCountryLatLongDatecasesdeathscases_lastdaydeaths_lastdayincrease_casesincrease_deathsincrease_cases_lastdayincrease_cases_prozMax_Dateactual_daydf_days
0AsiaAfghanistan33.93911067.7099532020-01-2200000000.0000002021-01-020346
1AsiaAfghanistan33.93911067.7099532020-01-2300000000.0000002021-01-020345
2AsiaAfghanistan33.93911067.7099532020-01-2400000000.0000002021-01-020344
3AsiaAfghanistan33.93911067.7099532020-01-2500000000.0000002021-01-020343
4AsiaAfghanistan33.93911067.7099532020-01-2600000000.0000002021-01-020342
...................................................
74600AfricaZimbabwe-19.01543829.1548572020-12-2913325359131483541775711.4929582021-01-0204
74601AfricaZimbabwe-19.01543829.1548572020-12-30136253601332535930011770.6949152021-01-0203
74602AfricaZimbabwe-19.01543829.1548572020-12-3113867363136253602423300-0.1933332021-01-0202
74603AfricaZimbabwe-19.01543829.1548572021-01-0114084369138673632176242-0.1033062021-01-0201
74604AfricaZimbabwe-19.01543829.1548572021-01-02144913771408436940782170.8755762021-01-0210
\n", "

74605 rows × 16 columns

\n", "
" ], "text/plain": [ " Continent Country Lat Long Date cases deaths \\\n", "0 Asia Afghanistan 33.939110 67.709953 2020-01-22 0 0 \n", "1 Asia Afghanistan 33.939110 67.709953 2020-01-23 0 0 \n", "2 Asia Afghanistan 33.939110 67.709953 2020-01-24 0 0 \n", "3 Asia Afghanistan 33.939110 67.709953 2020-01-25 0 0 \n", "4 Asia Afghanistan 33.939110 67.709953 2020-01-26 0 0 \n", "... ... ... ... ... ... ... ... \n", "74600 Africa Zimbabwe -19.015438 29.154857 2020-12-29 13325 359 \n", "74601 Africa Zimbabwe -19.015438 29.154857 2020-12-30 13625 360 \n", "74602 Africa Zimbabwe -19.015438 29.154857 2020-12-31 13867 363 \n", "74603 Africa Zimbabwe -19.015438 29.154857 2021-01-01 14084 369 \n", "74604 Africa Zimbabwe -19.015438 29.154857 2021-01-02 14491 377 \n", "\n", " cases_lastday deaths_lastday increase_cases increase_deaths \\\n", "0 0 0 0 0 \n", "1 0 0 0 0 \n", "2 0 0 0 0 \n", "3 0 0 0 0 \n", "4 0 0 0 0 \n", "... ... ... ... ... \n", "74600 13148 354 177 5 \n", "74601 13325 359 300 1 \n", "74602 13625 360 242 3 \n", "74603 13867 363 217 6 \n", "74604 14084 369 407 8 \n", "\n", " increase_cases_lastday increase_cases_proz Max_Date actual_day \\\n", "0 0 0.000000 2021-01-02 0 \n", "1 0 0.000000 2021-01-02 0 \n", "2 0 0.000000 2021-01-02 0 \n", "3 0 0.000000 2021-01-02 0 \n", "4 0 0.000000 2021-01-02 0 \n", "... ... ... ... ... \n", "74600 71 1.492958 2021-01-02 0 \n", "74601 177 0.694915 2021-01-02 0 \n", "74602 300 -0.193333 2021-01-02 0 \n", "74603 242 -0.103306 2021-01-02 0 \n", "74604 217 0.875576 2021-01-02 1 \n", "\n", " df_days \n", "0 346 \n", "1 345 \n", "2 344 \n", "3 343 \n", "4 342 \n", "... ... \n", "74600 4 \n", "74601 3 \n", "74602 2 \n", "74603 1 \n", "74604 0 \n", "\n", "[74605 rows x 16 columns]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_country_period" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "tags": [ "export" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Switzerland 4\n", "finished\n", "347\n" ] } ], "source": [ "\n", "# Select country or for evaluation of every country remark the variable country_list\n", "\n", "\n", "#country_list =['Austria','Switzerland','Germany','United Kingdom','Spain']\n", "#country_list =['United Kingdom']\n", "#country_list =['Germany']\n", "#country_list =['Spain']\n", "#country_list =['Switzerland']\n", "#country_list =['Poland']\n", "#country_list =['Turkey']\n", "#country_list =['US']\n", "\n", "\n", "df_country_exp = pd.DataFrame()\n", "\n", "#logistic functions\n", "\n", "def logistic_function1(x,b1,dt1,K1,b2,dt2,K2,b3,dt3,K3,b4,dt4,K4):\n", " return K1/(1+np.exp(-np.log2(81)/dt1*(x-b1)))\n", "\n", "def logistic_function2(x,b1,dt1,K1,b2,dt2,K2,b3,dt3,K3,b4,dt4,K4):\n", " return K1/(1+np.exp(-np.log2(81)/dt1*(x-b1))) + K2/(1+np.exp(-np.log2(81)/dt2*(x-b2)))\n", "\n", "def logistic_function3(x,b1,dt1,K1,b2,dt2,K2,b3,dt3,K3,b4,dt4,K4):\n", " return K1/(1+np.exp(-np.log2(81)/dt1*(x-b1))) + K2/(1+np.exp(-np.log2(81)/dt2*(x-b2))) + K3/(1+np.exp(-np.log2(81)/dt3*(x-b3)))\n", "\n", "def logistic_function4(x,b1,dt1,K1,b2,dt2,K2,b3,dt3,K3,b4,dt4,K4):\n", " return K1/(1+np.exp(-np.log2(81)/dt1*(x-b1))) + K2/(1+np.exp(-np.log2(81)/dt2*(x-b2))) + K3/(1+np.exp(-np.log2(81)/dt3*(x-b3))) + K4/(1+np.exp(-np.log2(81)/dt4*(x-b4)))\n", "\n", "\n", "for country in country_list:\n", "\n", " df_country_modell = df_country_period[df_country['Country'] == country]\n", " \n", " expdays = 30\n", " wave = 0\n", "\n", " datum = pd.date_range(start=df_country_modell['Date'].max(), periods=expdays)\n", " datum = pd.date_range(start=df_country_modell['Date'].min(),end=datum.max())\n", " datum = datum.strftime(\"%Y-%m-%d\")\n", " \n", " zeilen= df_country_modell['cases'].count()\n", " x = np.arange(1,zeilen+1)\n", " x_exp = np.arange(1, x.max() + expdays )\n", " y = df_country_modell['cases'] \n", " \n", " y_min = y.min()\n", " y = y - y_min\n", " \n", " \n", " try: \n", " popt, pcov = curve_fit(logistic_function4, x, y )\n", " y_exp = (logistic_function4(x_exp, *popt)) \n", " \n", " df = pd.DataFrame({'day':x_exp, 'expected':y_exp,'datum':datum, 'Country' : country})\n", " df_country_exp = df_country_exp.append(df)\n", " \n", " wave=4\n", " print(country,wave)\n", " \n", " except RuntimeError:\n", " try:\n", " popt, pcov = curve_fit(logistic_function3, x, y )\n", " y_exp = (logistic_function3(x_exp, *popt)) \n", " \n", " df = pd.DataFrame({'day':x_exp, 'expected':y_exp,'datum':datum, 'Country' : country})\n", " df_country_exp = df_country_exp.append(df)\n", " \n", " wave=3\n", " print(country,wave)\n", " \n", " except RuntimeError:\n", " try:\n", " popt, pcov = curve_fit(logistic_function2, x, y )\n", " y_exp = (logistic_function2(x_exp, *popt)) \n", " \n", " df = pd.DataFrame({'day':x_exp, 'expected':y_exp,'datum':datum, 'Country' : country})\n", " df_country_exp = df_country_exp.append(df)\n", " \n", " wave=2\n", " print(country,wave)\n", " \n", " except RuntimeError:\n", " try:\n", " popt, pcov = curve_fit(logistic_function1, x, y )\n", " y_exp = (logistic_function2(x_exp, *popt)) \n", " \n", " df = pd.DataFrame({'day':x_exp, 'expected':y_exp,'datum':datum, 'Country' : country})\n", " df_country_exp = df_country_exp.append(df)\n", " \n", " wave=1\n", " print(country,wave) \n", " \n", " except RuntimeError:\n", " print(''.join(country) + \": Error - curve_fit Log failed\")\n", " \n", " \n", "df_country_exp.reset_index(drop=True, inplace=True)\n", "print('finished')\n", "print(zeilen)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAD4CAYAAADy46FuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3xU9Z3/8ddncg8QSMKdgCAXFVAUI6DWtkoLaC/aXe3SbVe2dUvXh9t2d7vd1e3+frZ197e1V9dttbVqxdaq1HqhKlUK1WpLhWBRbiLhHm4JhIRArjPz+f0xJzqkIQRIcmaS9/PxmMfMfOeck/ccJe+cy5wxd0dEROREImEHEBGR1KaiEBGRDqkoRESkQyoKERHpkIpCREQ6lBl2gK42ePBgHzt2bNgxRETSypo1aw66+5D2Xut1RTF27FjKysrCjiEiklbMbOeJXtOuJxER6ZCKQkREOqSiEBGRDqkoRESkQyoKERHpUKeKwsx2mNk6M1trZmXBWJGZLTOzLcF9YdL0t5lZuZltNrO5SeMXB8spN7O7zcyC8RwzezwYf83MxibNsyD4GVvMbEFXvXEREemcU9miuNLdL3T30uD5rcByd58ILA+eY2aTgfnAFGAecI+ZZQTz3AssBCYGt3nB+E3AYXefAHwPuDNYVhFwOzATmAHcnlxIIiLS/c5k19O1wKLg8SLguqTxx9y9yd23A+XADDMbARS4+0pPXNv84TbztC7rCWB2sLUxF1jm7tXufhhYxrvlIiIiAI1HYO3Poewn3bL4zn7gzoEXzcyBH7n7fcAwd98H4O77zGxoMO0o4I9J81YEYy3B47bjrfPsDpYVNbNaoDh5vJ153mFmC0lsqTBmzJhOviURkTTmDttegrIH4e0XINYEJTOg9NNd/qM6WxSXu/veoAyWmdlbHUxr7Yx5B+OnO8+7A4niug+gtLRU38QkIr1Xcz2sfQRW/RgObob8wYlymHo9lJSefP7T0KmicPe9wX2lmT1F4njBATMbEWxNjAAqg8krgNFJs5cAe4PxknbGk+epMLNMYCBQHYy/v808L3X2zYmI9BrRJlizCF75Nhw9ACOnw8d+BJOvg6zcbv3RJz1GYWb9zGxA62NgDrAeWAK0noW0AHgmeLwEmB+cyTSOxEHrVcFuqjozmxUcf7ixzTyty7oeWBEcx3gBmGNmhcFB7DnBmIhI37FlGfxgBiz9MhRPgE8vhYW/hWnzu70koHNbFMOAp4IzWTOBn7v7r81sNbDYzG4CdgE3ALj7BjNbDGwEosAt7h4LlnUz8BCQBywNbgAPAD81s3ISWxLzg2VVm9kdwOpguq+7e/UZvF8RkfRxtAqe/xJsfAaKJ8KnfgnjZ4O1t1e++1jiD/feo7S01HX1WBFJe1t+A0/fDI218L4vw2VfgMycbvtxZrYm6eMPx+l1lxkXEUlr8Rgs/xr8/n9g6GS48RkYNjnUSCoKEZFU0VQHv/w7ePvXUPoZmPv/ICsv7FQqChGRlFC3H372l1C5Ca75Nsz4bNiJ3qGiEBEJW+0eWPSRxGmvn/wFTJgddqLjqChERMJUswse+jA0HIa/eQpGzwg70Z9RUYiIhOVoFTx8LTTWwI1Pw6iLw07ULhWFiEgYmo7Czz8OR/bBgiUpWxKgohAR6XmxKPzib2HfWpj/85Tc3ZRMRSEi0tNWfB3Kl8GH74Jzrg47zUnpq1BFRHrShqcSH6Yr/Uy3XBK8O6goRER6SuUmePqWxPdGzLsz7DSdpqIQEekJLY3wxE2QnQ8ffxgys8NO1GkqChGRbvbQ77fz23u/AJUb2Pv+b0PBiLAjnRIVhYhIN9padZRlzy3myurHeSrzag4Me1/YkU6ZznoSEelGD7+0nm9l/Yho0UQ+9vcPJnY9pRkVhYhIN6lvjjJp/XcZbtVE/mJxWpYEaNeTiEi3WfnyUj7Bi1SdtwBK2v1OoLSgohAR6QbxlibGr7yNg5Fihl57R9hxzoiKQkSkG+x47luMje9m28w7sNyCsOOcERWFiEhXq9tPyZs/4Dex6Vxw1cfDTnPGVBQiIl1t+R1E4s08MvBz5Gen/zlDKgoRkS4SjzsHN6+EtT/j5/Yhis86L+xIXUJFISLSRe5cuokdj3yBKi/gmw0fYdroQWFH6hLpv00kIpIC6pujHF71KKWRt1l1/tf42thLueb89LpUx4moKEREusCzr+/kH/xR6ovOY8bHPs+MSEbYkbqMikJE5Ay5Owdfvo8xkSr86nugF5UE6BiFiMgZW7NlDzfUP8qBwunYxA+GHafLqShERM7Q9ue+zRCrZdCH/xPMwo7T5VQUIiJn4MihSubWPM7WwveQM/7ysON0CxWFiMgZqF3+LfrTQO2lt4UdpduoKERETtexgwx/62F+Fb+U8VNnhp2m23S6KMwsw8z+ZGbPBs+LzGyZmW0J7guTpr3NzMrNbLOZzU0av9jM1gWv3W2W2JlnZjlm9ngw/pqZjU2aZ0HwM7aY2YKueNMiImdqb00DKx/5GhnxJn7Z/xMMzM8KO1K3OZUtii8Cm5Ke3wosd/eJwPLgOWY2GZgPTAHmAfeYWeu5YvcCC4GJwW1eMH4TcNjdJwDfA+4MllUE3A7MBGYAtycXkohIWL7/3CrO37OYpfFZTJk2I+w43apTRWFmJcCHgPuThq8FFgWPFwHXJY0/5u5N7r4dKAdmmNkIoMDdV7q7Aw+3mad1WU8As4OtjbnAMnevdvfDwDLeLRcRkVDsrWlgxFsP0d8a+dAt3+Hf5p0bdqRu1dktiruAfwXiSWPD3H0fQHA/NBgfBexOmq4iGBsVPG47ftw87h4FaoHiDpZ1HDNbaGZlZlZWVVXVybckInJ6nvnjRhZEllI//hoYNiXsON3upEVhZh8GKt19TSeX2d5JxN7B+OnO8+6A+33uXurupUOGDOlkTBGRUxePO5llP6bAGsj/wK1hx+kRndmiuBz4qJntAB4DrjKznwEHgt1JBPeVwfQVwOik+UuAvcF4STvjx81jZpnAQKC6g2WJiITitbd2cEPLEvYPvxJGTAs7To84aVG4+23uXuLuY0kcpF7h7p8ClgCtZyEtAJ4JHi8B5gdnMo0jcdB6VbB7qs7MZgXHH25sM0/rsq4PfoYDLwBzzKwwOIg9JxgTEQlF1YofMMiOUXj1V8KO0mPO5KKA3wAWm9lNwC7gBgB332Bmi4GNQBS4xd1jwTw3Aw8BecDS4AbwAPBTMysnsSUxP1hWtZndAawOpvu6u1efQWYRkdO2t/Ig76l6jC0DZzHxrEvCjtNjLPGHe+9RWlrqZWVlYccQkV5o2f1f4YMV36fq488yZPIVYcfpUma2xt1L23tNn8wWEemM5nou3vMz1udc1OtK4mRUFCIinRAt+wlFXsMbZ38u7Cg9TkUhInIyLY34q3fxx/h5FJz7vrDT9DgVhYhIB6KxOC888i2y6iu5O/oxpowsCDtSj1NRiIh04DfrdzN1+094w87Bz3ovY4v7hR2px+k7s0VEOrDnpQeZZ4cY/on7eHTSpWHHCYW2KERETmBnZQ1zDj3C/v6TyZg4O+w4oVFRiIicwPql9zE6UkXO7Nt65Xdhd5aKQkSkHc1NTUzbfj87sidReOFHwo4TKhWFiEg7NrzwACUcoG7mP/fprQlQUYiI/BmPtTBs7f+yJTKOKe//q7DjhE5FISLSRvmKhxgZ38v+C79IJEO/JrUGRESSxWMUr7mbTfExlM79VNhpUoKKQkQk2fonKWrcxZMD/pq8nKyw06QEfeBORCTgsSi8/E3KGc2xs68OO07K0BaFiEjgnnu+ix16m7uaP8YFo4vCjpMytEUhIgKs3lbFnKqH2Jc7lguvXMBHpo0MO1LKUFGIiADrnr+Pz0T20PShn/DZaRPCjpNStOtJRPq8bfsPMafqQfb3O4+cCz4WdpyUo6IQkT5v06/upsQOkjvvq33+U9jtUVGISJ92+HA1syoepLzfRQyaOjfsOClJRSEifdqbT/w3xXaE7Dlf1dbECagoRKTPOna4kukVP2XdgPcwZtr7w46TslQUItJnHX7xm/SjkaYr/j3sKClNRSEifdORvQzf/DBPxy/nnAtmhJ0mpakoRKTPWb+nllcf+Fc8HuPZor9lQK6u6dQRFYWI9Dn3P7OMWTXP8VzWHGZfpq2Jk9Ens0WkT/nTrsNcte9+PCub675wFwwYFnaklKctChHpU5598QU+mrESn3WzSqKTVBQi0mdsqzrK5TvvpSGjgOwr/jHsOGnjpEVhZrlmtsrM3jCzDWb2tWC8yMyWmdmW4L4waZ7bzKzczDab2dyk8YvNbF3w2t1miU+3mFmOmT0ejL9mZmOT5lkQ/IwtZragK9+8iPQtv/n101yVsZbYZV+AvEFhx0kbndmiaAKucvdpwIXAPDObBdwKLHf3icDy4DlmNhmYD0wB5gH3mFlGsKx7gYXAxOA2Lxi/CTjs7hOA7wF3BssqAm4HZgIzgNuTC0lEpLMO1TUyvfxujmQW0/+KW8KOk1ZOWhSecDR4mhXcHLgWWBSMLwKuCx5fCzzm7k3uvh0oB2aY2QigwN1XursDD7eZp3VZTwCzg62NucAyd69298PAMt4tFxGRTnv1149TaptpvPRLkJ0fdpy00qljFGaWYWZrgUoSv7hfA4a5+z6A4H5oMPkoYHfS7BXB2Kjgcdvx4+Zx9yhQCxR3sKy2+RaaWZmZlVVVVXXmLYlIX+LO5LfupjJjGEPf99mw06SdThWFu8fc/UKghMTWwdQOJm/vqlrewfjpzpOc7z53L3X30iFDhnQQTUT6oub1S5gYK2fN2M9BZnbYcdLOKZ315O41wEskdv8cCHYnEdxXBpNVAKOTZisB9gbjJe2MHzePmWUCA4HqDpYlItI58Rix5f/J1vgIMi/8q7DTpKXOnPU0xMwGBY/zgA8AbwFLgNazkBYAzwSPlwDzgzOZxpE4aL0q2D1VZ2azguMPN7aZp3VZ1wMrguMYLwBzzKwwOIg9JxgTETmpY01RHv7xd8ireZvvRm9g2lmDw46UljrzyewRwKLgzKUIsNjdnzWzlcBiM7sJ2AXcAODuG8xsMbARiAK3uHssWNbNwENAHrA0uAE8APzUzMpJbEnMD5ZVbWZ3AKuD6b7u7tVn8oZFpO94as0OrthzP9uyxtH/or9gaEFu2JHSkiX+cO89SktLvaysLOwYIhIyd+db3/wa/9rwPfyvHsHO+3DYkVKama1x99L2XtMns0WkVyrbcYjrji2mZsAE7Jxrwo6T1lQUItIrrf3No0yK7CH/yi9DRL/qzoTWnoj0OvVNLVxS8RDV2SPInnZ92HHSnopCRHqdN159lgutnNqLboYMfZvCmVJRiEivk7v6hxxiIGNmLww7Sq+gohCRXmXr2xuZ1vAa28ZcT0Z2XthxegUVhYj0KrWv/Ig4xvirPx92lF5DRSEivUdLI5P2PsUrkUsoGjEu7DS9hopCRHqPjc/QP1bLyqLrTj6tdJpOBxCRXsNX388OH0HT6PeEHaVX0RaFiPQKa8pWYhWr+Fn0KsYPKwg7Tq+iohCRtBeNxVn77A+JeoTn7QouPkvfmNyVtOtJRNJe2Y5DXO2/o3r4Fbz6uflkRNr7zjM5XdqiEJG0t3X1rxlp1RTM+pRKohuoKEQk7RVufZoGyyd3ii4l3h1UFCKS1rYfqOGy5pXsHX4lZOeHHadXUlGISFp764/PM8iOUTBdV4ntLioKEUlreeXP0UAuQy68OuwovZaKQkTSViwa5fy6V3h74GWQpQsAdhcVhYikrZ1rV1BMLU0TPxR2lF5NRSEiaevgn35Fs2dw9ixd26k7qShEJC25O8V7X2ZL7lQGDx4cdpxeTUUhImnpQMU2xvtO6sdcFXaUXk9FISJpqWHTrxMPJn4w3CB9gIpCRNJSzvYVVPhgCs86P+wovZ6KQkTST7SZwZV/4OXYNEYW6tPY3U1FISLpZ9dKsmP1rM66mPxsXQS7u6koRCT9lC+jhSwqCi8JO0mfoCoWkbTy1v4jFLy+lD2cQ9GgorDj9AnaohCRtPLoS28wvGErr2ecz1XnDg07Tp+gLQoRSSu2eyURcz53441w1piw4/QJJ92iMLPRZvZbM9tkZhvM7IvBeJGZLTOzLcF9YdI8t5lZuZltNrO5SeMXm9m64LW7zcyC8RwzezwYf83MxibNsyD4GVvMbEFXvnkRSS/1zVHG1L5ONJIDoy4OO06f0ZldT1HgS+5+HjALuMXMJgO3AsvdfSKwPHhO8Np8YAowD7jHzDKCZd0LLAQmBrd5wfhNwGF3nwB8D7gzWFYRcDswE5gB3J5cSCLSt6zfc4SZkY0cGXwRZOaEHafPOGlRuPs+d389eFwHbAJGAdcCi4LJFgGtV+W6FnjM3ZvcfTtQDswwsxFAgbuvdHcHHm4zT+uyngBmB1sbc4Fl7l7t7oeBZbxbLiLSx7y1fRfn2S5yJrw37Ch9yikdzA52CV0EvAYMc/d9kCgToPWo0ihgd9JsFcHYqOBx2/Hj5nH3KFALFHewrLa5FppZmZmVVVVVncpbEpE00rD1VSLm9Jv0/rCj9CmdLgoz6w/8EvhHdz/S0aTtjHkH46c7z7sD7ve5e6m7lw4ZMqSDaCKSzgYdeI1my9bxiR7WqaIwsywSJfGIuz8ZDB8IdicR3FcG4xXA6KTZS4C9wXhJO+PHzWNmmcBAoLqDZYlIH3P4WDNTmt+kauAFkJUbdpw+pTNnPRnwALDJ3b+b9NISoPUspAXAM0nj84MzmcaROGi9Ktg9VWdms4Jl3thmntZlXQ+sCI5jvADMMbPC4CD2nGBMRPqYjdt3Mdl2EhtzedhR+pzOfI7icuBvgHVmtjYY+3fgG8BiM7sJ2AXcAODuG8xsMbCRxBlTt7h7LJjvZuAhIA9YGtwgUUQ/NbNyElsS84NlVZvZHcDqYLqvu3v1ab5XEUlj1RtfJmJO8VR9/0RPO2lRuPurtH+sAGD2Ceb5L+C/2hkvA6a2M95IUDTtvPYg8ODJcopI75ZT8QeayaLfuFlhR+lzdAkPEUl57s7oI6+zK3+Kjk+EQEUhIilvXflOzvHtNJdcFnaUPklFISIpb+NrLxIxZ8zFc8KO0iepKEQk5eXsSRyf6H/2pWFH6ZNUFCKS8s5tfJPd+ZN1fCIkKgoRSWnx+homxbexv7A07Ch9lopCRFLasfJXyTCndphOiw2LikJEUlrL1t/R5Jl4ibYowqKiEJGUlrX7D6z1CRQPGhh2lD5LRSEiqauxlv7VG/hj/DyGDNAXFYVFRSEiqWvXaxhx/hifrKIIkYpCRFJS9bFmfvX0YzSTycbIJAbkdOYaptIdVBQikpJe2VLFuKNr2Jozmc9eNYXEtxNIGFTRIpKS3tq2k4/YTnzWbZx35cSw4/RpKgoRSUnx7a8QMYfx7ws7Sp+nXU8iknIammOU1JTRHMmDkdPDjtPnqShEJOW8WVHDpbaeI8MugczssOP0eSoKEUk5G99+mwmRveRP0teepgIVhYiknJbylwHIP+fKkJMIqChEJMXE486Qg3+kPmMADL8g7DiCikJEUsy2qqNc4uuoHjITIvoVlQr0X0FEUsqWDaspsYNknzs37CgSUFGISEqJvvUCAIMv/FDISaSVikJEUkZTNMawylfYkzOByKBRYceRgIpCRFLGH9Zv5yJ/i+j4D4QdRZKoKEQkZRzd+CJZFmNk6UfDjiJJVBQikjJGHlhBLf3JOmtm2FEkiYpCRFJDtInzjvye1bmXQ4auV5pKVBQikhq2riDf69kyWJftSDWqbRFJCb7haY54P+pGXB52FGnjpFsUZvagmVWa2fqksSIzW2ZmW4L7wqTXbjOzcjPbbGZzk8YvNrN1wWt3W/B1VWaWY2aPB+OvmdnYpHkWBD9ji5kt6Ko3LSIpJtqEb36eZfGLGVE0IOw00kZndj09BMxrM3YrsNzdJwLLg+eY2WRgPjAlmOceM8sI5rkXWAhMDG6ty7wJOOzuE4DvAXcGyyoCbgdmAjOA25MLSUR6j8d+dh+RpiP8KnYpIwflhR1H2jhpUbj774DqNsPXAouCx4uA65LGH3P3JnffDpQDM8xsBFDg7ivd3YGH28zTuqwngNnB1sZcYJm7V7v7YWAZf15YIpLmdh2qZ/jWX1AVGUzh+XMoHVsUdiRp43QPZg9z930Awf3QYHwUsDtpuopgbFTwuO34cfO4exSoBYo7WNafMbOFZlZmZmVVVVWn+ZZEJAwrXlvDeyNvklP6Ke76RCkD87LCjiRtdPVZT9bOmHcwfrrzHD/ofp+7l7p76ZAhQzoVVETC5+74G48SMadg1t+GHUdO4HSL4kCwO4ngvjIYrwBGJ01XAuwNxkvaGT9uHjPLBAaS2NV1omWJSC+xqeIQ8xqXsq94JhSNCzuOnMDpFsUSoPUspAXAM0nj84MzmcaROGi9Ktg9VWdms4LjDze2mad1WdcDK4LjGC8Ac8ysMDiIPScYE5FeYttvH2KEVdP/yn8KO4p04KSfozCzR4H3A4PNrILEmUjfABab2U3ALuAGAHffYGaLgY1AFLjF3WPBom4mcQZVHrA0uAE8APzUzMpJbEnMD5ZVbWZ3AKuD6b7u7m0PqotImorH4kze/hC7s8YxeorOU0lllvjjvfcoLS31srKysGOIyEmsW/5zzn/lZtZM/wYXf/TmsOP0eWa2xt1L23tNl/AQkR7X2NjIwFfvYJeNYsqcT4cdR05CRSEiPW7vb37AGN/Lwcv+D7m5uWHHkZNQUYhIz6rbz8i1d/H7+BQmvOcvw04jnaCiEJEe09QSpebRhVi0iZ8M+jwFedlhR5JOUFGISI+Ix53Hv/8fDNr7Mv/VMp8xE6eFHUk6SZcZF5EesfSph/lkzQ/ZPvi9fOia/8MFo3VNp3ShohCRble++kXe9+a/sid3AmMX/pxxObqUeDrRricR6Va7Vj7J6Oc+yaFIMYM+8ySmkkg7KgoR6R6xFqIvfpWSFz7DNhtN3Sd+RcGwMWGnktOgXU8i0uV2rnmBzBf+jVHN23k0eiXjb/w+MyaVnHxGSUkqChHpGvE4Neueo3bZtzjr6BvsZQj/OeArNI6/mk+oJNKaikJETltDUwub//QKA7Y9R/H2XzGo5QD1XsyzI7/ApR//Z/6jUN9e3BuoKETkpI40trB5fx2VNXXkHt7Cobf/wPBDqzi/aS0XWh0tnsEr8fOpHPf3zLjm03x4uAqiN1FRiMhx9tc2sn5PLdZwkM3ryjhasZGhjds4P7Kd2baDXGsBoDqjmN1DrmDfhKvIPncO5wwaylWD8kJOL91BRSHSh1UfbWJL+VtUbXuTxn2byDq8heHNu5huFRTZUWYH0zXn5HOsaAr1Iz9NzdALKJo4i6IhEyiy9r6xWHobFYVIb+dO/Mh+KnduomrnRur3v03G4e0UNOxiVHwfM63pnUmPRgqoKxpPbOhH2F88iX6jJjNg9FSyC0aRrVLos1QUIr2BOxyt5Oi+zRzevYlj+7YQObyVfkd3UdxcQa43MhwYDrR4BvszhnMkfzRbCy+j38jzGDr+AgaUTKV/v8H0D/u9SMpRUYikA3dorCFWvZO6/duoO7CVpqodWO0uco/toah5L3neQH+gP4kyqPAh7Mgcydq8ucQLx9N/5CRGjJvC2PHnMDonJ+x3JGlERSESsmg0St3hSo4d2kPT4T1Ea/YSP7KPyNH9ROr2kd+wl0HN++jn9WQAg4LbUc+lwoewL3M46/tNpblgHBlDxtNvxLmUjJvEmMEFjMvQxRfkzKkoRLpAPO7UNUaprW/mSN0RjtUdprG2kua6Q8SOHcSPVWMN1WQ2HSaruYa8lhr6RWspjFczmMMUWoy2J5RWe38qKWRH5nDq8qfS3L8EHzSGzKKz6D/sbEaNGMm44nzOzcwI5T1L36GikJQXjztxd2LuuEMseB6PO/FYlHgsSiwehbgTi0WJx6N4LIbHYsF4jHgsRjy4J554HI21EG9uJtbSQLylCW9pwKONxFsaiTU3Em1uIN7c+lojxBqxaBMZ0XqyY8fIidWTG68nx+uD3T4NjKKRMeYnfC8N5HA0UkBDZgEN+YOozBnPnvyhxPsNg4LhZAwcSc6gUeQXjaRgwAAm9csmEtFBZAmXikI6p/EIHK2Eowdort1HfU0lDUeP0NxQR7TxKLGmY3jzMYg2EY9Gicdb8FgU4lHM45jHiHiMiEeJeCwxRjwxRvzd58SJeHBPnIzglnjuZBAnu3Wsg1/IXS1KBs1k0WLZNFkuTRn5NGfm05JZSGNWCQ3Z/anOGUBG7gAy8grIyh9IzoBi8gYOJn/QMHIGDIb8IvKy8tAnDSTdqCjkeO5QtZn68lc5uvN1qHqLfke20S96+J1JsoPboOD5Mc+hnhwaPIdmsrBIJhHLwC0TIhnELXGLWQ7xjHywDNwygvsIRBKPiUQwy8AjEbAMLNLONBYBi+DvzJOR9FoGZvbOmCW9Zq3Pg2VZJIPMjCwiWdlEsvOIZOYSycklIyuPzOw88vLyycvvR05uHpaZS2ZGpv6xSJ+l//cFok3sXPUsx954mpKq31EQryEfaPZ+bPFRbOciavNGYwUjyB44gsyBw8gbNIyCgkEUFBQwKD+HgXlZDM7NJC8r+GUtIr2GiqIPO7RrE/tX/JCSnU9ylh/hiOexKusSDg6/DMbMYuhZ5zFhaAHTC/PI0H5ykT5LRdHHHGuK8tLvf8/A1Xdxaf1vGYjxh8yZNJ7/11xy1V/wgQJ93EpEjqei6CNq6ptZ8eofyF35HebFX6HZsnl91Kco/sAXee/ZE8OOJyIpTEXRy1UeaeQXL77MqDf/l2vtVVoi2VSe/1mGz/syl/QfGnY8EUkDKopeal9tA0/+ejklG+7l7+33xDKyqZ76WQbP/TIjVBAicgpUFL1MzbEmnljyNKM33c8tkVU0Z+RydNpCBs7+EkMGDAs7noikIRVFL9FwaDdlzz/EsK2L+Tt20ZDVn9qL/4mB7/s82f2Kw44nImksLYrCzOYB/wNkAPe7+zdCjhS+YwehogzfvYqa9S9SWLOOK4Dt2RPZN/O/GfGevyEvZ0DYKUWkF0j5ojCzDOAHwAeBCmC1mf23gjwAAAWQSURBVC1x943hJutC7hBrgWgDtDRCtBFaGqDhMNQfwusPEa2rJF69g+jBbXj1Nvo37gcgRoQd8bN5Jv9Gps/5JBdMnxXymxGR3ibliwKYAZS7+zYAM3sMuBbo0qKoPXSAmh9chZG4fpB5cI8HY44Fz4977G3HTzBd0uPWnwGQSYwcmolw4usWGZAFVHkBu3wYO30C+3LmsKf/VDJGXcSMSSXceP4IXTxORLpFOhTFKGB30vMKYGbyBGa2EFgIMGbMmNP6IZHMLA7ljw9+nQP27q91MDCSHts703kwXevN37l8ReTdeay91wGMuGUSjWQTjeQQi+TQEskhGtwaMwfSmDWQeF4x8bwisnP7UdQvmxljCykpzD+t9ykicqrSoSja+zP5uD+/3f0+4D6A0tLS07qk6ICBRUz/lyWnM6uISK+WDl9/VQGMTnpeAuwNKYuISJ+TDkWxGphoZuPMLBuYD+hPfxGRHpLyu57cPWpm/wC8QOL02AfdfUPIsURE+oyULwoAd38eeD7sHCIifVE67HoSEZEQqShERKRDKgoREemQikJERDpk7qf1+bSUZWZVwM7TnH0wcLAL43S1VM8HytgVUj0fpH7GVM8HqZfxLHcf0t4Lva4ozoSZlbl7adg5TiTV84EydoVUzwepnzHV80F6ZGylXU8iItIhFYWIiHRIRXG8+8IOcBKpng+UsSukej5I/Yypng/SIyOgYxQiInIS2qIQEZEOqShERKRDKgrAzOaZ2WYzKzezW8PO08rMdpjZOjNba2ZlwViRmS0zsy3BfWEPZ3rQzCrNbH3S2AkzmdltwXrdbGZzQ8r3VTPbE6zHtWZ2TYj5RpvZb81sk5ltMLMvBuOptA5PlDGV1mOuma0yszeCjF8LxlNiPXaQL2XW4Slx9z59I3Hp8q3A2UA28AYwOexcQbYdwOA2Y98Ebg0e3wrc2cOZ3gtMB9afLBMwOVifOcC4YD1nhJDvq8C/tDNtGPlGANODxwOAt4McqbQOT5QxldajAf2Dx1nAa8CsVFmPHeRLmXV4KjdtUcAMoNzdt7l7M/AYcG3ImTpyLbAoeLwIuK4nf7i7/w6o7mSma4HH3L3J3bcD5STWd0/nO5Ew8u1z99eDx3XAJhLfC59K6/BEGU8kjIzu7keDp1nBzUmR9dhBvhPp8XV4KlQUiX8Au5OeV9DxP4qe5MCLZrbGzBYGY8PcfR8k/kEDQ0NL964TZUqldfsPZvZmsGuqdXdEqPnMbCxwEYm/NlNyHbbJCCm0Hs0sw8zWApXAMndPqfV4gnyQQuuws1QUiU3EtlLlnOHL3X06cDVwi5m9N+xApyhV1u29wHjgQmAf8J1gPLR8ZtYf+CXwj+5+pKNJ2xkLK2NKrUd3j7n7hUAJMMPMpnYweY9nPEG+lFqHnaWiSDT36KTnJcDekLIcx933BveVwFMkNkUPmNkIgOC+MryE7zhRppRYt+5+IPhHGwd+zLub9KHkM7MsEr+AH3H3J4PhlFqH7WVMtfXYyt1rgJeAeaTYemybL1XX4cmoKGA1MNHMxplZNjAfWBJyJsysn5kNaH0MzAHWk8i2IJhsAfBMOAmPc6JMS4D5ZpZjZuOAicCqng7X+osj8DES6zGUfGZmwAPAJnf/btJLKbMOT5QxxdbjEDMbFDzOAz4AvEWKrMcT5UuldXhKwj6ango34BoSZ3ZsBb4Sdp4g09kkzoJ4A9jQmgsoBpYDW4L7oh7O9SiJTeYWEn8F3dRRJuArwXrdDFwdUr6fAuuAN0n8gxwRYr73kNil8CawNrhdk2Lr8EQZU2k9XgD8KciyHvi/wXhKrMcO8qXMOjyVmy7hISIiHdKuJxER6ZCKQkREOqSiEBGRDqkoRESkQyoKERHpkIpCREQ6pKIQEZEO/X9u3CNH6ehVDwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(x,y)\n", "plt.plot(x_exp,y_exp)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\degan\\anaconda3\\lib\\site-packages\\pandas\\core\\series.py:679: RuntimeWarning: divide by zero encountered in log2\n", " result = getattr(ufunc, method)(*inputs, **kwargs)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXhc9X3v8fdXM9o3S7Zs2bKNDN6wAS8YA4FQCEuA0JClSYEkpA2JQxrSpkn73DRp0/bePrfpkrZpSODShGIIITuJEwyBEBoCBLAsvGGDkY2NZcmSLMlarHVmvvePGYMRki1rRpqj0ef1PPPMzDm/c85XB/zRT785c37m7oiISObKSncBIiIyvhT0IiIZTkEvIpLhFPQiIhlOQS8ikuHC6S5gODNmzPDq6up0lyEiMmls3rz5sLtXDLcukEFfXV1NTU1NussQEZk0zGz/SOs0dCMikuEU9CIiGU5BLyKS4RT0IiIZTkEvIpLhFPQiIhlOQS8ikuECeR29iMik5w6DPdDfBX2d8eeBboj0Q6Q3/jzY++b3oWy4+M9TXoqCXkRktAZ6oOMAdNTD0RboboajzXD0cOJ1C/QdeSPcPXpq+y+qVNCLiIwnd6e9tYWu+p1Y68s07d1BVsd+inobmBFpYrp1vnWjUC4UzYTCCiieDTOXQW4x5JXEn3NL4o+8EsgugOx8COfFH9l5b7wO50FofCJZQS8iU9LgQD8HX9lCz/5aju7bTF77bioH91PBEcoTbWZ5mOasmXTkzmZf2TJ2FVRRvXApc09bBEWz4uGeWwxmaf1ZTkZBLyIZzyP9tL26hZaXn6V9Tw3lnbuojuyj2gYBOOq5NORUc6DsQvZNXwwVS+gpOYMzzzybedMKmZfm+pOloBeRjDPQdoAXn3+cgX3PMa1tK6cN7GY6g0wHuijgQO4iXqj4AKGqFRScdi4zT1vOotKCdJc9bhT0IjKpdXV1sm/7Mxzd+yx5TZup6n6RCm9lFdDv2ezJXsimGe8jVnUuzF7Fheeey7LsULrLnlAKehGZNCLRGLte3kXD1scJN25mQd9O5vXv4WyLX91ykFnsLTyH35WuoHLZxaw472KW5eanuer0U9CLSGD1R6Js2/YCufW/w/c9zfS2Gs6mhbOBXvLYHV7Mb2bcQOXytzNn+cVUzZpHVbqLDiAFvYgEikcjbH9mI0e2/Jz5rb/lPBoBOOwl1Jes5MiCTzB/5eWUVK9iRdbUGoIZKwW9iKRdLOY8u+k5crd/hzMaN3JOtJUBD7O3aDW7l3yc7MWXk1+5lJXTNAwzFgp6EUmr3ZufoO2X/8QF/c8SJYvf+Ap6lv4FV13/IZYWlqa7vIygoBeRtIgeqWfLt2/j3K4n6KCIlxavY+G7PsdlJbMIZQX7C0iTzUmD3szuBq4Dmt39rMSy7wNLEk2mAUfcfeUw2+4DuoAoEHH3NSmqW0QmqT3NXdT9/F+5tP5OlseiPDX3Flb+4d+wrKQs3aVlrNH06O8BbgfuPbbA3f/w2Gsz+yrQcYLtL3P3w2MtUEQyx5aX6+h44BO8k1qeZDU1y7/In3/gCizgtxCY7E4a9O7+pJlVD7fO4v91Pgi8I7VliUim2br5aWZt+AjLrIP23/sHLrn0Ni5RwE+IZCceeTvQ5O6vjLDegUfNbLOZrTvRjsxsnZnVmFlNS0tLkmWJSJD8euMPOX3D+wlnQfeHHqbsss8E/kZgmSTZoL8ReOAE6y9y99XANcCnzeySkRq6+13uvsbd11RUVCRZlogERWT7g7z9+Vtpz55F7q1PUL5obbpLmnLGHPRmFgbeB3x/pDbu3pB4bgYeBPRfWGSKONIzwP+746vYjz/GC7Ez2PfuH1Ey67R0lzUlJdOjvwJ4yd3rh1tpZoVmVnzsNXAVsCOJ44nIJDEYjfHf3/oatxz6B+pyl/HQ2f/JRWctTHdZU9ZJg97MHgB+Bywxs3ozuyWx6gaGDNuY2Rwz25h4Owt4ysy2As8DD7n7I6krXUSCyN35wX3f5LbWf+RI+Tks+dwj/P0HLtC18Wk0mqtubhxh+R8Ns6wBuDbxei+wIsn6RGQScXce+tF/84FXv0xz8ZlUffLn8RmYJK2S/TBWROR1m5/4CVfu+EsO5S+k8k8eis+TKmmnoBeR1Nj3FOf89lPstyqqPvMIoYJp6a5IEhT0IpIUd+f+H/2Q3nvez2uxGfz07G8SKiw/+YYyYRT0IpKUB3/yANdvv40joXLuqv4PPvh7q9Jdkgyhu1eKyJg984v1vGvb52jLm0flpx/mn0tmp7skGYZ69CJy6tx59v7/zdpNn+W13EVMv+1xTCEfWOrRi8ipGeih/Xuf5IK9G9hceDGLbv0OOcW6xXCQqUcvIqPi7jz+yIPUf2UNpXt/zte4icWfeZAS3Uc+8NSjF5GT6mk9yJb7vsDlRzZwKGsW/z77X1h8wbsozs9Jd2kyCgp6ERlZ1yH2bPgnql75Dms9wgtVN3LOzf/K5/OK0l2ZnAIFvYi8ifd38/IzG4jW3s/SrmeodufJ3Espu/avWbVSs4FORgp6kSmur7+f3vrt9O15iu7tDzO/azNLGaSVUn6Y8x62VFzPlz7yLorzstNdqoyRgl4kw0WiMZq7+mlo76G16QADjTvJat1NfsceKnrqWBipo8wGANjnlfym9PfJW3Ytay+9jhvy8rkhzfVL8hT0IhliIBLjteY2GvbXcaThFaLt+4m17SOnq5651sJia6DEel5vf5R8DuVWs3Pm++ipWMmR8hW8bc25XFWUm8afQsaDgl5kEvHIAEcOvUrzgVfobNzDwOFXyeo4QFHvQWZEmziddhaav94+Qoiugkr6i+bSVbaWvsqlFM1dTsGcZRQWz+YMzds6JSjoRYIkFiXWcZD2hjqONNTR2/IqtO8nt7ue0v4GpscOU4Zz7Mr1qBuHs2bQkTeH1qILOVJeTdGs05k+bzEFFQsIF8+mLKR/5lOd/g8QmUixGHQ30X94L+0H6+huepVo2z6yu+K98vJIM2GiTAemAzE3miijJTSTprxziBTPJat8AcWVp1MxbzGz553BrOwcZqX755JAO2nQm9ndwHVAs7uflVj2d8AngJZEsy+6+8Zhtr0a+BoQAr7l7l9JUd0iweOO97TR3bKfoy376W99jYHW1/COg+QcbaCwr4myaAthouQClYnNmn0aDVTwWs4ieqddhk+bT86MBZRUnsGs+WcwZ/o0Zof0JXYZu9H06O8BbgfuHbL83939X0fayMxCwDeAK4F6YJOZbXD3nWOsVWTCRKIxuvsjdPVF6Ozqoq+jmcGORqJdzXhXE3a0hVBPMzl9hykYaKUo0sb0WCv59FMMHJs8b8BDHPJymrNmsDdnKb1FlxIpqoJp8ymqPIPyqoXMn1nOisIcTOPlMk5GM2fsk2ZWPYZ9rwXqEnPHYmbfA64HFPQybqIxp28wSu9glN7+QXp6uujp6qTvaCe9RzsZ6OlioLeLSN9RIn1d0N9FqL+D7IEj5Ea6yI90UhDroti7KbWjVNDNPBsc9lidFNJuZXSFy2jMX8yreTMZKJqDl1QRmjaX3OnzmT5rHlXlhczP1SippE8y//fdZmY3AzXA5929fcj6KuDAce/rgfNH2pmZrQPWAcyfPz+JsmRMYjEY6IboIB7tp6+vj57eXvp6e4lG+okM9hONRIgMDhKNDhKNDBCLDBKLRIhG33j2aIRYdJBYNALRQSwWBY9ALEqWRyAWwTyKxSLgUbJiESwWxTy+POv15yiW2CaLCFmJZccex/ZhHiXkEbKILw8RJUyUAgaYYf2j/vH7LI+eUAl9ucUMZJcSyamkI7eMjrxSLL+MUNF0wqWzySmtJL98DkXllZTkFqAZUWUyGGvQ3wH8H8ATz18FPjakzXB/h/owy+Ir3O8C7gJYs2bNiO1kDLpboGk7sZZXONqyj/7W16CrEevrIDzQRU60m/zY0debG5CfeKRa1I0oIaIWIkKIKFnEOPY6vjw2zHPMQgxamBg5xCwMoRBkhSErjIUSj6wwFsohFA7h2QWQXUBWbjHh/CJy8ovJLSgmr7CE/MJicgtKIKcQcoohr5S8cA554/DzigTBmILe3ZuOvTaz/wJ+MUyzemDece/nAg1jOZ6cor5O2P0IfS//Ct/7G/J7DwHxe1LneDaHvZwmyjniZfRmVRHJKYGCEsL5JeTm5hPOySU7Jzf+nJ1LVnYeoexsQqEcssLZhMJhQuFswuFswjk5hMM5hMNhwtnZZGfnkB3OJpydQzicTVYoDKHseChbiFBWFqH0nh2RKWdMQW9ms929MfH2vcCOYZptAhaZ2QLgIHADcNOYqpRR6d/3PC1P3EHFaxvJ9T56vIhnYsvZblcSqVhO0dyzqJwzj6qyQqrK8jmrJI8ijR2LZLzRXF75AHApMMPM6oG/BS41s5XEh2L2AZ9MtJ1D/DLKa909Yma3Ab8kfnnl3e7+4rj8FFPc0YZdHPz+51nc8TSlns/P7WLqqq6nbNGFnFs9navmTiMnrMvzRKYqcw/ecPiaNWu8pqYm3WUEXyxG/UNfYebmf6PPs/ntzA8x7bLbOH/JfMK67lpkSjGzze4+7H2k9Xf7JHWo6RCH/vtmVvY9x+N2AUXv+xrvOmdpussSkQBS0E9Cjz6/jQUbb2K5N/DbJX/F297/F+RrrF1ERqB0mGTu/9VzXPDkR6nKauPwe77L21ddne6SRCTgFPSTyGNb9nDOk+uoCrUTvvlBZi+4KN0licgkoE/sJokf1bxG6CcfZ1nWa2R9cD1hhbyIjJKCfhJ4bm8r+376D7wjq5aBK/4vOWdquEZERk9DNwG342AHt99zL/eEf8jgme8h/6Jb012SiEwyCvoAG4zG+NIPnuObWd/ES+eRff3XQbeyFZFTpKAPsG/99lWub/02VeFmeO9GyNO9EkXk1CnoA+q11h4ef/xhfhD+JZz3CajWh68iMjb6MDagvvyz7fx11nq8oAKu+Nt0lyMik5h69AH05O4WSup+xsqc3XDlNyC3+OQbiYiMQEEfMO7O7Y9u4+s53yNWuYKsFbqzs4gkR0EfMM+/2sb5jd9lVnYrXPMdyNLomogkRykSML94bifrwg8RXXIdnPa2dJcjIhlAPfoAGYjEmPfy3RRbL7zji+kuR0QyhHr0AfLM9t3c5BtpmnsNzFqe7nJEJEOcNOjN7G4zazazHcct+xcze8nMtpnZg2Y2bYRt95nZdjPbYmaaMuokOp/4dwqsn/J3/U26SxGRDDKaHv09wNC7aD0GnOXu5wC7gb86wfaXufvKkaa4kriWpgYu73iQV2ZcSfZs9eZFJHVOGvTu/iTQNmTZo+4eSbx9Fpg7DrVNKa3/800KrR+75C/TXYqIZJhUjNF/DHh4hHUOPGpmm81s3Yl2YmbrzKzGzGpaWlpSUNYkMtjLvN338RtfzRlnnZfuakQkwyQV9Gb2JSAC3D9Ck4vcfTVwDfBpM7tkpH25+13uvsbd11RUVCRT1uSz5X4Ko0d4pvJDhLJ0d0oRSa0xB72ZfRS4DviQu/twbdy9IfHcDDwIrB3r8TJWLErs6a/zQmwhhYtG/D0oIjJmYwp6M7sa+F/Au929Z4Q2hWZWfOw1cBWwY7i2U9quDWQd2cedketYXlWa7mpEJAON5vLKB4DfAUvMrN7MbgFuB4qBxxKXTt6ZaDvHzDYmNp0FPGVmW4HngYfc/ZFx+Skms2fvoDN/Ho/F1nCWgl5ExsFJvxnr7jcOs/jbI7RtAK5NvN4LrEiqukx3sBYOPMevKz9D+WAeM4tz012RiGQgfTM2nZ6/C3KKuK/vYpbPKcU0TaCIjAMFfbp0N8OOHxM950a2NsdYPkfTBIrI+FDQp8vmeyA6QF31TURirvF5ERk3Cvp0iAzApm/Dwit4oWcGgHr0IjJuFPTpsGsDdB+C82/lZ1saqCzJY15ZQbqrEpEMpaBPh+f/C8pPZ3veGn63t5WPv30BWfpGrIiMEwX9RGt+CQ48C+f+MY+91EKWwQfOnZfuqkQkgynoJ1rtvZCVDStu5Om6w5w9dxqlBdnprkpEMpiCfiJF+mHrA7D0Wv76V4fYvL+di86Ynu6qRCTDKegn0ksPQW8b0ZU3851nXwPg/efqVv4iMr4U9BOpdj2UzudQxYUA/OP7zuaMiqI0FyUimU5BP1Ha98He/4HVH+FQZz8As0vz0lqSiEwNCvqJUnsfWBasvImGI30AzJmWn+aiRGQqUNBPhGgEttwPC6+A0rk0dvQCUKkevYhMAAX9RKh7DLoaYfVHAWjs6KMoN0xJni6rFJHxp6CfCLX3QuFMWPxOABqP9Gl8XkQmjIJ+vHU2wu5fwqoPQSgbd+fFxg6qZxSmuzIRmSJGM5Xg3WbWbGY7jltWbmaPmdkrieeyEba92sxeNrM6M/tCKgufNLbcDx6FVR8BYHdTNwfaennH0plpLkxEporR9OjvAa4esuwLwOPuvgh4PPH+TcwsBHwDuAZYBtxoZsuSqnayicXghfug+u0w/QwAfrWrCYDLFfQiMkFOGvTu/iTQNmTx9cD6xOv1wHuG2XQtUOfue919APheYrupY9+T8evnEx/CAuxp6WZOaR4zSzRGLyITY6xj9LPcvREg8Txc97QKOHDc+/rEsqmj9l7ImwZn/v7ri1q6+qlQyIvIBBrPD2OHu8G6j9jYbJ2Z1ZhZTUtLyziWNUGOtsKun8OKGyD7jWBv6epnZnFuGgsTkalmrEHfZGazARLPzcO0qQeOv9H6XKBhpB26+13uvsbd11RUVIyxrADZ9n2IDrz+IewxzQp6EZlgYw36DcCxgeePAj8bps0mYJGZLTCzHOCGxHaZzz0+bFN1LlSe9frigUiMtqMDVCjoRWQCjebyygeA3wFLzKzezG4BvgJcaWavAFcm3mNmc8xsI4C7R4DbgF8Cu4AfuPuL4/NjBEz9JmjZ9aYPYQFaj8ZvZjazWGP0IjJxwidr4O43jrDq8mHaNgDXHvd+I7BxzNVNVrXrIbsQznrfmxY3dx4LevXoRWTi6JuxqdbXCTt+Ame/H3KLX18ciznfeKIOQEM3IjKhFPSptuPHMNjzlmGbza+18+jO+JelTptekI7KRGSKUtCnWu16mLks/kHscbbXdwDw9BfewbSCnHRUJiJTlII+lRq3QcML8d68vflrBDsaOqgozqVKk42IyART0KfSC/dBKBfO+eBbVr14sJOz5pSkoSgRmeoU9Kky2Bv/ktSyd0NB+ZtW9Q1GqWvp5qyq0jQVJyJTmYI+VXZugL4OWH3zW1a9dKiLaMxZPkdBLyITT0GfKrXrofz0+C2Jh9hxMP5B7HIN3YhIGijoU+FwHex/On5fG3vrvdxebOigND+buWX6IFZEJp6CPhVq14OFYOVNb1kViznPvdrGWVUl2DC/BERExpuCPlmRAdj6ACy5Boor37J6445G9rYc5Q/OnZuG4kREFPTJ2/0IHG0Z9kNYgB9vrmdeeT7vXjG15lwRkeBQ0Cerdj0Uz4GFV7xlVTTm1Oxv5+KFMwhladhGRNJDQZ+MIweg7nFY9WHICr1l9e6mLrr6IpxXXT7MxiIiE0NBn4wXvhN/XvXhYVdv2hefU11BLyLppKAfq1g0HvRnXAZlpw3b5PlX25hdmqfLKkUkrRT0Y7Xn19BZP+KHsO7Opn1tnFddrssqRSStxhz0ZrbEzLYc9+g0s88OaXOpmXUc1+bLyZccELXroWA6LHnXsKvr23tp6uznvOqyCS5MROTNTjqV4Ejc/WVgJYCZhYCDwIPDNP2tu1831uMEUnczvPwwnH8rhIe/t3xdSzcAy3TbAxFJs1QN3VwO7HH3/SnaX7Bt+S7EIiMO2wC0dg8AUFGkicBFJL1SFfQ3AA+MsO5CM9tqZg+b2fIUHS993KH2Xph/IVQsGbFZa3d8IvDpRZpNSkTSK+mgN7Mc4N3AD4dZXQuc5u4rgK8DPz3BftaZWY2Z1bS0tCRb1vjZ/zS07Tlhbx6g9egAueEsCnLeen29iMhESkWP/hqg1t2bhq5w905370683ghkm9mM4Xbi7ne5+xp3X1NRUZGCssZJ7b2QWwLL3nPCZoe7+5lRlKsrbkQk7VIR9DcywrCNmVVaIunMbG3ieK0pOGZ69LbDzp/B2R+AnIITNm3tHtCwjYgEwpivugEwswLgSuCTxy27FcDd7wT+APiUmUWAXuAGd/dkjplW234Ikb6TDtsAtB7tp6IodwKKEhE5saSC3t17gOlDlt153OvbgduTOUZguMevnZ+9AuasPGnz1u4Bllbq0koRST99M3a0GmqhaceoevPurqEbEQkMBf1o1d4L4fz4+PxJtPcMMhCNaehGRAJBQT8a/d2w/Uew/L2QV3rS5lsPHAFg+ZyTtxURGW8K+tF48UEY6B7VsA3A5v3thLKMFfMU9CKSfgr60ahdDzMWw/wLRtW8Zn8by+eUUJCT1GfdIiIpoaA/maadUL8p3psf5Zefdjd1a9hGRAJDQX8yteshlAMrbhpV877BKG1HB6iappuZiUgwKOhPZLAXtn4Pll4HhdNP3h5o7OgDYHapZpUSkWBQ0J/Izg3QdwTO/aNRb9J4pBeA2erRi0hAKOhPpHY9lC2A6rePepOGRI9+jnr0IhIQCvqRtOyO35L43I9C1uhP07EefWWpevQiEgwK+pHUroesMKz80Clt1tDRy/TCHPKydR96EQkGBf1wIv3x6QKXXAtFM09p0/2tPcwt07CNiASHgn44L/0CetviwzanwN3Z2dipCcFFJFAU9MPZvB5K58Pp7zilzRo7+jjSM8iy2Qp6EQkOBf1QbXvh1d/Evwl7Ch/CAuxs6ATgTAW9iASIgn6o2nvBsmDVqX0IC/DSoXjQL1XQi0iAKOiPFx2EF+6HxVdDyZxT3vy1th4qinMpytXNzEQkOJIKejPbZ2bbzWyLmdUMs97M7D/NrM7MtpnZ6mSON+5efhiONsPqU/sQ9pgDbb3M0xU3IhIwqeh6Xubuh0dYdw2wKPE4H7gj8RxMm++BkipYeMWYNj/Q3sPq+WWprUlEJEnjPXRzPXCvxz0LTDOz2eN8zLFp3w97fg2rPgyhU//9F4nGaOzoY165evQiEizJBr0Dj5rZZjNbN8z6KuDAce/rE8vewszWmVmNmdW0tLQkWdYYvHBf/HnVR8a0eWNHH9GYM7esIIVFiYgkL9mgv8jdVxMfovm0mV0yZP1wM3X4cDty97vcfY27r6moqEiyrFMUGYhfbbP4nTBt3ph2Ud8ev8fNPAW9iARMUkHv7g2J52bgQWDtkCb1wPHJORdoSOaY4+KlX0B3E6y5Zcy7ONDeA6ChGxEJnDEHvZkVmlnxsdfAVcCOIc02ADcnrr65AOhw98YxVzteNn0bpp0GCy8f8y7q23sx04QjIhI8yVx1Mwt40OLzqIaB77r7I2Z2K4C73wlsBK4F6oAe4I+TK3ccNO+C/U/BFX8PWWO/42R9Ww+zS/LICeurCSISLGMOenffC6wYZvmdx7124NNjPcaEqLk7Pifsqg8ntZv69l59ECsigTS1u5/93bDlAVj+XiickdSuDrT3MFfj8yISQFM76Lf/AAa64LyPJ7Wb/kiUQ5196tGLSCBN3aB3j38IO+tsmHteUrtq7uzHHao0IbiIBNDUDfoDz0PTDjjvFrDhLvcfvY7eQQCmFeSkojIRkZSaukG/6VuQWwJnfyDpXR0L+tL87KT3JSKSalMz6I8ehp0/hRU3QG5R0rtT0ItIkE3NoK9dD9GBpL4JezwFvYgE2dQL+uggPP8tOP1SmLk0JbtU0ItIkE29oN/5M+hqgPM/lbJddvQOEs4yCnLG/s1aEZHxMvWC/tk7oPx0WHRVynbZ0TtIaX42luTVOyIi42FqBf2BTXCwJt6bz0rdj34s6EVEgmhqBf1zd8QvqVx5Y0p329k7SImCXkQCauoEfcfB+Pj86pshtzi1u+4dZFqBgl5EgmnqBP2mb4HHYO0nUrrbvsEouxo7NXQjIoE1NYJ+oAc23wNLroWy6pTu+nM/2MJg1JlRlJvS/YqIpMrUCPpt34feNrjgT1K+6+bOfgBuu2xhyvctIpIKmR/0sSj87naYvRJOe1vKdz8QjXHpkgrKCnVDMxEJpmTmjJ1nZk+Y2S4ze9HM/myYNpeaWYeZbUk8vpxcuWPw0kPQWgcXfzbpu1QOZyASIzuU+b8vRWTySmbO2AjweXevTUwSvtnMHnP3nUPa/dbdr0viOGPnDk//B5QtgDPfPS6HGIjGNE+siATamBPK3RvdvTbxugvYBVSlqrCU2PcUHNwMb/tMUhN/n8hAJEauevQiEmApSSgzqwZWAc8Ns/pCM9tqZg+b2fIT7GOdmdWYWU1LS0sqyor35gsrYOVNqdnfMAajGroRkWBLOqHMrAj4MfBZd+8csroWOM3dVwBfB3460n7c/S53X+PuayoqKpItCw5th7pfwfm3Qvb4Tdo9ENHQjYgEW1IJZWbZxEP+fnf/ydD17t7p7t2J1xuBbDObkcwxR+3pr0FOUXyqwHE0GHUFvYgEWjJX3RjwbWCXu//bCG0qE+0ws7WJ47WO9Zij1rIbdvwY1nwM8svG9VC66kZEgi6Zq24uAj4CbDezLYllXwTmA7j7ncAfAJ8yswjQC9zg7p7EMUfnyX+BcB5c9JYrPlPK3XXVjYgE3piD3t2fAk54Ybq73w7cPtZjjEnLbtjxo/iVNoXjO0o0GI3/zsoJ6T70IhJcmdcVPdabf9ufjvuhBqIxAPXoRSTQMiuhjvXmz/v4uPfmIT4+D5CjMXoRCbDMSqgJ7M1D/Bp6gGz16EUkwDInofo64JVfxnvzRSm4Dn8U1KMXkckgmatugiWvFP50y7jcuGwk/RGN0YtI8GVO0AMUlE/o4Y4N3ahHLyJBpoRKwoB69CIyCSihkjCoyytFZBJQQiXhWI9et0AQkSBTQiWhXz16EZkElFBJGNTllSIyCSihkqBbIIjIZKCESoK+MCUik4ESKgm6BYKITAZKqCSoRy8ik4ESKgm6BYKITAZKqCS8MfGITqOIBFeyk4NfbWYvm1mdmX1hmPVmZv+ZWL/NzFYnc7yg0S0QRGQySGZy8I6yf4UAAAUKSURBVBDwDeAaYBlwo5ktG9LsGmBR4rEOuGOsxwuigWiUUJYRytJUgiISXMl0RdcCde6+190HgO8B1w9pcz1wr8c9C0wzs9lJHDMwfrWziW88sefEk+aKiARAMrcprgIOHPe+Hjh/FG2qgMahOzOzdcR7/cyfPz+JsiZGcV6Ya8+uZPmc0nSXIiJyQskE/XCdWR9Dm/hC97uAuwDWrFkzbJsgOf/06Zx/+vR0lyEiclLJDN3UA/OOez8XaBhDGxERGUfJBP0mYJGZLTCzHOAGYMOQNhuAmxNX31wAdLj7W4ZtRERk/Ix56MbdI2Z2G/BLIATc7e4vmtmtifV3AhuBa4E6oAf44+RLFhGRU5HUnLHuvpF4mB+/7M7jXjvw6WSOISIiydE3fUREMpyCXkQkwynoRUQynIJeRCTDWfzz0mAxsxZg/xg2nQEcTnE5qRb0GoNeHwS/xqDXB8GvMej1QfBqPM3dK4ZbEcigHyszq3H3Nemu40SCXmPQ64Pg1xj0+iD4NQa9PpgcNR6joRsRkQynoBcRyXCZFvR3pbuAUQh6jUGvD4JfY9Drg+DXGPT6YHLUCGTYGL2IiLxVpvXoRURkCAW9iEiGy4igP9kk5eliZvvMbLuZbTGzmsSycjN7zMxeSTyXTXBNd5tZs5ntOG7ZiDWZ2V8lzuvLZvbONNX3d2Z2MHEet5jZtWmsb56ZPWFmu8zsRTP7s8TyIJ3DkWoM0nnMM7PnzWxrosa/TywPxHk8QX2BOYenxN0n9YP4LZL3AKcDOcBWYFm660rUtg+YMWTZPwNfSLz+AvBPE1zTJcBqYMfJaiI+6ftWIBdYkDjPoTTU93fAXwzTNh31zQZWJ14XA7sTdQTpHI5UY5DOowFFidfZwHPABUE5jyeoLzDn8FQemdCjH80k5UFyPbA+8Xo98J6JPLi7Pwm0jbKm64HvuXu/u79KfF6BtWmobyTpqK/R3WsTr7uAXcTnQQ7SORypxpGko0Z39+7E2+zEwwnIeTxBfSOZ8HN4KjIh6EeagDwIHHjUzDYnJj8HmOWJWbYSzzPTVt0bRqopSOf2NjPblhjaOfbnfFrrM7NqYBXx3l4gz+GQGiFA59HMQma2BWgGHnP3QJ3HEeqDAJ3D0cqEoB/1BORpcJG7rwauAT5tZpeku6BTFJRzewdwBrASaAS+mlietvrMrAj4MfBZd+88UdNhlqWrxkCdR3ePuvtK4nNJrzWzs07QfMJrHKG+QJ3D0cqEoA/sBOTu3pB4bgYeJP6nXJOZzQZIPDenr8LXjVRTIM6tuzcl/tHFgP/ijT+J01KfmWUTD9D73f0nicWBOofD1Ri083iMux8B/ge4moCdx6H1BfUcnkwmBP1oJimfcGZWaGbFx14DVwE7iNf20USzjwI/S0+FbzJSTRuAG8ws18wWAIuA5ye6uGP/8BPeS/w8pqU+MzPg28Aud/+341YF5hyOVGPAzmOFmU1LvM4HrgBeIiDncaT6gnQOT0m6Pw1OxYP4BOS7iX/S/aV015Oo6XTin8JvBV48VhcwHXgceCXxXD7BdT1A/E/OQeK9kFtOVBPwpcR5fRm4Jk313QdsB7YR/wc1O431XUz8T/JtwJbE49qAncORagzSeTwHeCFRyw7gy4nlgTiPJ6gvMOfwVB66BYKISIbLhKEbERE5AQW9iEiGU9CLiGQ4Bb2ISIZT0IuIZDgFvYhIhlPQi4hkuP8Pp/iKvVUbLdUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(x,np.log2(y))\n", "plt.plot((x_exp), np.log2(y_exp))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.3" } }, "nbformat": 4, "nbformat_minor": 4 }