
Decoding Deep Learning
Demystified and Codeless with KNIME

Satoru Hayasaka, Ph.D.
satoru.hayasaka@knime.com

Data Scientist,
KNIME Inc., Austin, TX

mailto:satoru.hayasaka@knime.com

This slide deck is available at
https://kni.me/s/4-i5-EcLrZwf5cxN

https://kni.me/s/4-i5-EcLrZwf5cxN

© 2022 KNIME AG. All rights reserved.

Agenda

▪ Introduction to deep learning
▪ Machinery of deep learning with KNIME

▪ Artificial neural networks

▪ Back propagation

▪ Optimizing neural network models

▪ Demo – classification with a feedforward neural network (FFNN)

▪ Convolutional Neural Networks (CNN)
▪ Computer vision

▪ Convolution & pooling layers

▪ Transfer learning

▪ Recurrent Neural Networks (RNN)
▪ Sequential data & RNN

▪ Long short-term memory (LSTM)

3

© 2022 KNIME AG. All rights reserved.

Target Audience

▪ Those interested in deep learning
▪ With some background knowledge in machine learning

▪ No KNIME experience? No problem!
▪ General introduction to deep learning

▪ Some pointers to get started with DL with KNIME

▪ Links to workflow examples on KNIME Hub

4

© 2022 KNIME AG. All rights reserved.

Artificial intelligence

Any technique that enables machines to mimic human intelligence

What is Deep Learning?

5

Machine learning

Ability to learn without being explicitly programmed using past

observations

Artificial neural networks

Extract patterns using neural networks

Deep learning

Modern revolution of neural networks

Machinery of deep learning with
KNIME

© 2022 KNIME AG. All rights reserved.

What is KNIME Analytics Platform?

▪ A tool for data analysis, manipulation, visualization, and reporting

▪ Based on the graphical programming paradigm

▪ Provides a diverse array of extensions:
▪ Text Mining

▪ Network Mining

▪ Cheminformatics

▪ Many integrations,

such as Java, R, Python,

Weka, Keras, Plotly, H2O, etc.

7

© 2022 KNIME AG. All rights reserved.

Keras + KNIME

▪ KNIME Deep Learning Extension

builds on top of the Keras Libraries

▪ The Keras libraries build on top of

TensorFlow

▪ Deep Learning libraries from

TensorFlow and Keras are accessible

via Python ...

▪ ... And KNIME with the Deep Learning

Keras Integration.

10

With

KNIME GUI

© 2022 KNIME AG. All rights reserved.

Installation

Deep Learning in KNIME Analytics Platform comes with a specific integration.

A few simple steps are necessary to get it up and running.

▪ On your machine:

▪ Anaconda with Python3 correctly installed

▪ Extensions installed on KNIME Analytics Platform

▪ KNIME Deep Learning - Keras Integration

▪ KNIME Deep Learning - TensorFlow Integration

NOTE: This is just a quick start guide to start using Deep Learning with your KNIME Analytics Platform.

If you are experiencing issues or want to customize your installation, please refer to

KNIME Deep Learning Integration Installation Guide

11

https://www.anaconda.com/products/individual
https://kni.me/e/XOee1uZPrzE36EPH
https://kni.me/e/KBQCLjzo-9GAFWAi
https://docs.knime.com/2021-12/deep_learning_installation_guide/index.html#_introduction

Artificial neural networks

© 2022 KNIME AG. All rights reserved.

Let’s Start Simple

Single neuron

13

Neural network

𝑦1 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

𝑥1

𝑥2

∑ 𝑓
𝑤2

𝑤1
𝑏

𝑦1

𝑥1

𝑥2

𝑥3

𝑥4

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓 𝑦1

𝑦2

© 2022 KNIME AG. All rights reserved.

Frequently used Activation Functions

14

Sigmoid Tanh
Rectified Linear Unit

(ReLU)

𝑓 𝑎 =
1

1 + 𝑒−𝑎 𝑓 𝑎 =
𝑒2𝑎 − 1

𝑒2𝑎 + 1
𝑓 𝑎 = 𝑚𝑎𝑥 0, 𝑎

Non-linear activation functions enable modeling of non-linear problems

© 2022 KNIME AG. All rights reserved.

Example: Passing the KNIME L1-Certification

15

Minutes attended

W
o
rk

fl
o
w

 b
u
ild

s

Passed certification

Didn’t pass certification

© 2022 KNIME AG. All rights reserved.

Example: Passing the KNIME L1-Certification

16

Input features:

𝑥1= minutes attended

𝑥2= workflows build

Output:

ො𝑦 =Probability that a person passed

ො𝑦 ≥ 0.5 ⇒ 𝑃𝑎𝑠𝑠𝑒𝑑 and ො𝑦 < 0.5 ⇒ 𝐹𝑎𝑖𝑙𝑒𝑑

-1.41

-0.044

-0.566

ො𝑦

-1.298

-1.431
-0.513

2.275

1.0733

-0.608

Input

Layer

Hidden

Layer

Output

Layer

𝑓1 = 𝑡𝑎𝑛ℎ 𝑓2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

∑ 𝑓1

∑ 𝑓1

∑ 𝑓2

𝑥1

𝑥2

© 2022 KNIME AG. All rights reserved.

Example: Passing the KNIME L1-Certification

17

Minutes attended

W
o
rk

fl
o
w

 b
u
ild

s

Passed certification

Didn’t pass certification

New sample

𝑥1= minutes attended = 170

𝑥2= workflows build = 8

© 2022 KNIME AG. All rights reserved.

Example: Passing the KNIME L1-Certification

18

-1.41

-0.044

-0.566

ො𝑦

Input features:

𝑥1= minutes attended

𝑥2= workflows build

Output:

ො𝑦 =Probability that a person passed

ො𝑦 ≥ 0.5 ⇒ 𝑃𝑎𝑠𝑠𝑒𝑑 and ො𝑦 < 0.5 ⇒ 𝐹𝑎𝑖𝑙𝑒𝑑

-1.298

-1.431
-0.513

2.275

1.0733

-0.608

Input

Layer

Hidden

Layer

Output

Layer

𝑓1 = 𝑡𝑎𝑛ℎ 𝑓2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

∑ 𝑓1-0.888

∑ 𝑓1-0.983

∑ 𝑓20.013 0.013

𝑥1

𝑥2

0.567

0.8

Normalize

Normalize

170

8

© 2022 KNIME AG. All rights reserved.

Training a Neural Network = Finding Good Weights

19

Input

Layer

Hidden

Layer

Output

Layer

170

8

Predicted ො𝑦 = 0.013

True y = 1

ℒ (ො𝑦 𝑥1, 𝑥2,𝑊 , 𝑦)𝐽 𝑊 =

ො𝑦

∑ 𝑓1

∑ 𝑓1

∑ 𝑓2

𝑥1

𝑥2

Binary cross entropy

ℒ = −(𝑦 log ො𝑦 + (1 − 𝑦) log(1 − ො𝑦))

© 2022 KNIME AG. All rights reserved.

Example of a Loss Landscape

20

𝐽(𝑤1, 𝑤2)

𝑤1

𝑤2

Goal find 𝑤1 and 𝑤2 of the global minima of the loss landscape

© 2022 KNIME AG. All rights reserved.

Learning Rule from Gradient Descent

▪ Adjust the weight for the next step by the

adjustment term ∆𝒘(𝑡)

𝒘(𝑡 + 1) = 𝒘(𝑡) + ∆𝒘(𝑡)

∆𝒘(𝑡)

Optimal

solution

L
o
s
s
 f

u
n
c
ti
o
n

Weight 𝒘

Weight in

current step 𝑡
Weight adjustment

based on gradient

Updated weight in

next step 𝑡 + 1

21

© 2022 KNIME AG. All rights reserved.

Idea Behind Gradient Descent

Mountain biking in

foggy conditions

1. Start at your current position

2. Until you reached the valley
1. Look for the direction of steepest ascent

2. Cycle into the opposite direction for 2m

3. Update the current position

22

Gradient descent

algorithm

1. Initialize the weights W

2. Until we reach a minimum
1. Calculate the gradient with respect to the

weights ∇𝑊𝐽(𝑥,𝑊)

2. make a little step into the opposite

direction 𝑊 ← 𝑊− 𝜂∇𝑊𝐽(𝑥,𝑊)

3. Update the weights

Note: ∇𝑊𝐽 𝑥,𝑊 =

𝜕𝐽

𝜕𝑤1

𝜕𝐽

𝜕𝑤2

, vector with the partial derivatives with respect to all weights.

© 2022 KNIME AG. All rights reserved.

Idea Behind Gradient Descent

23

𝐽(𝑤1, 𝑤2)

𝑤1

𝑤2

∇𝑊𝐽 𝑥,𝑊 =

𝜕𝐽

𝜕𝑤1

𝜕𝐽

𝜕𝑤2

Rolling down the

steepest slope until

reaching the minimum

Back propagation

© 2022 KNIME AG. All rights reserved.

Backpropagation

▪ Efficient way to calculate the gradient during optimization

Forward pass

Backward pass

25

𝑥 𝑧 ො𝑦 𝐽(ො𝑦, 𝑦;𝑤1, 𝑤2)
𝑤1 𝑤2

𝑥 𝑧 ො𝑦 𝐽(ො𝑦, 𝑦;𝑤1, 𝑤2)
𝑤1 𝑤2

© 2022 KNIME AG. All rights reserved.

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

26

𝑦
𝑤5

𝑜4
𝑤4

𝑜3
𝑤3

𝑜2
𝑤2

𝑜1
𝑤1

𝑥
Error

𝜀

© 2022 KNIME AG. All rights reserved.

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

27

𝑦
𝑤5

𝑜4
𝑤4

𝑜3
𝑤3

𝑜2
𝑤2

𝑜1
𝑤1

𝑥
Error

𝜀

𝜕𝜀

𝜕𝑤5
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

© 2022 KNIME AG. All rights reserved.

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

28

𝑦
𝑤5

𝑜4
𝑤4

𝑜3
𝑤3

𝑜2
𝑤2

𝑜1
𝑤1

𝑥
Error

𝜀

𝜕𝜀

𝜕𝑤5
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝜀

𝜕𝑤4
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

© 2022 KNIME AG. All rights reserved.

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

29

𝑦
𝑤5

𝑜4
𝑤4

𝑜3
𝑤3

𝑜2
𝑤2

𝑜1
𝑤1

𝑥
Error

𝜀

𝜕𝜀

𝜕𝑤5
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝜀

𝜕𝑤4
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝜀

𝜕𝑤3
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝑤4

𝜕𝑜3
𝜕𝑜3

𝜕𝑤3

© 2022 KNIME AG. All rights reserved.

𝜕𝜀

𝜕𝑤2
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝑤4

𝜕𝑜3
𝜕𝑜3

𝜕𝑤3

𝜕𝑤3

𝜕𝑜2
𝜕𝑜2

𝜕𝑤2

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

30

𝑦
𝑤5

𝑜4
𝑤4

𝑜3
𝑤3

𝑜2
𝑤2

𝑜1
𝑤1

𝑥
Error

𝜀

𝜕𝜀

𝜕𝑤5
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝜀

𝜕𝑤4
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝜀

𝜕𝑤3
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝑤4

𝜕𝑜3
𝜕𝑜3

𝜕𝑤3

© 2022 KNIME AG. All rights reserved.

𝜕𝜀

𝜕𝑤2
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝑤4

𝜕𝑜3
𝜕𝑜3

𝜕𝑤3

𝜕𝑤3

𝜕𝑜2
𝜕𝑜2

𝜕𝑤2

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

31

𝑦
𝑤5

𝑜4
𝑤4

𝑜3
𝑤3

𝑜2
𝑤2

𝑜1
𝑤1

𝑥
Error

𝜀

𝜕𝜀

𝜕𝑤5
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝜀

𝜕𝑤4
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝜀

𝜕𝑤3
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝑤4

𝜕𝑜3
𝜕𝑜3

𝜕𝑤3

𝜕𝜀

𝜕𝑤1
=
𝜕𝜀

𝜕𝑦

𝜕𝑦

𝜕𝑤5

𝜕𝑤5

𝜕𝑜4
𝜕𝑜4

𝜕𝑤4

𝜕𝑤4

𝜕𝑜3
𝜕𝑜3

𝜕𝑤3

𝜕𝑤3

𝜕𝑜2
𝜕𝑜2

𝜕𝑤2

𝜕𝑤2

𝜕𝑜1
𝜕𝑜1

𝜕𝑤1

© 2022 KNIME AG. All rights reserved.

𝜕𝜀

𝜕𝒘𝟒

𝜕𝜀

𝜕𝒘𝟑

𝜕𝜀

𝜕𝒘𝟐

Gradients by Chain Rule

▪ Gradients can be determined – one layer at a time – by the chain rule

▪ To determine the gradient at a particular layer, you only need gradients from the

subsequent layers ➔ known as back-propagation

32

𝑦1

𝑦2

𝑦3

𝑜1
2

𝑜2
2

𝑜3
2

𝑜4
2

𝑜1
2

𝑜2
2

𝑜3
2

𝑜4
2

𝑥1

𝑥2

𝑥3

© 2022 KNIME AG. All rights reserved.

Example: Passing the KNIME L1 Certification

33

-2.603

-0.554

-0.106

ො𝑦

Input features:

𝑥1= minutes attended

𝑥2= workflows build

Output:

𝑦 = Probability that a person passed

𝑦 ≥ 0.5 ⇒ 𝑃𝑎𝑠𝑠𝑒𝑑 and 𝑦 < 0.5 ⇒ 𝐹𝑎𝑖𝑙𝑒𝑑

-1.554

0.146
1.309

0.931

-3.096

0.117

Input

Layer

Hidden

Layer

Output

Layer

𝑓1 = 𝑡𝑎𝑛ℎ 𝑓2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

∑ 𝑓10.396

∑ 𝑓1-0.929

∑ 𝑓20.967 0.967

𝑥1

𝑥2

0.567

0.8

Normalize

Normalize

170

8

Optimizing neural network models

© 2022 KNIME AG. All rights reserved.

Loss Functions

▪ Quantifies errors or deviations in the network outcome compared to the target

▪ We want to minimize the loss!!

▪ Different types of loss functions for classification and regression

▪ Classification: We want the predicted category to match the target

▪ Regression: We want to minimize deviation from the target

35

© 2022 KNIME AG. All rights reserved.

Different Loss Functions

▪ Binary classification
▪ Binary cross entropy

▪ Multi-class classification
▪ Categorical cross entropy

▪ Regression problem
▪ Mean squared error (MSE)

▪ Mean absolute error (MAE)

36

© 2022 KNIME AG. All rights reserved.

Learning Rate η

37

η too small η too large η just right

© 2022 KNIME AG. All rights reserved.

Loss Landscape of a Real Neural Network

▪ In reality, loss landscape may not

be smooth
▪ Possibly many local minima

▪ Different optimizer algorithms with
▪ Varying learning rate 𝜂

▪ History of gradients in previous iterations

38

Source: https://www.cs.umd.edu/~tomg/projects/landscapes/

© 2022 KNIME AG. All rights reserved.

Optimizers in Keras

39

Optimizer How it works Strengths Weaknesses When to use

SGD with

momentum
Use the previous gradient to

accelerate convergence

-Reduces oscillation

near maxima
-Const learning rate

NAG (Nesterov

accelerated gradient)

Use the current gradient to predict

gradient

-Increased

responsiveness

-Additional

hyperparameter
RNN

Adagrad
Updating by cumulating sum of sq

gradients from past

-Different learning

parameters for

different features

-Computationally

expensive

-Shrinking learning

rate

Sparse data (e.g.

text)

Adadelta
Modified Adagrad with decaying

average of sq gradients from past

-Learning rate not

dramatically shrinking

like Adagrad

-Computationally

expensive

Sparse data (e.g.

text)

RMSProp
Modified Adagrad with sq gradients

added very slowly

-Learning rate not

dramatically shrinking

like Adagrad

Adam (Adaptive

Moment Estimation)

RMSProp plus decaying average of

gradients from past
-Fast convergence

-Computationally

expensive

© 2022 KNIME AG. All rights reserved.

Which Activation Functions? Which Loss Functions?

▪ Depends on the problem you are working on

40

Activation Functions

Loss Functions

Hidden

Layers

Output

Layer

Problems S
ig

m
o

id

T
a

n
h

R
e
L

U

S
ig

m
o

id

T
a

n
h

L
in

e
a

r

R
e
L

U

S
o

ft
m

a
x

B
in

a
ry

 C
E

H
in

g
e

C
a
te

g
o

ri
c

a
l
C

E

M
S

E

M
S

L
E

M
A

E

Classification

Binary classification (0 vs 1) ✓ ✓ ✓ ✓ ✓

Binary classification (-1 vs 1) ✓ ✓ ✓ ✓ ✓

Multi-class classification ✓ ✓ ✓ ✓ ✓

Regression

Regression ✓ ✓ ✓ Δ Δ ✓ Δ ✓

Regression (wide range) ✓ ✓ ✓ ✓ ✓

Regression (possible outliers) ✓ ✓ ✓ ✓ ✓

✓ Recommended

Δ Can be used

© 2022 KNIME AG. All rights reserved.

Codeless Deep Learning with KNIME Analytics Platform

41

Download the workflow from the KNIME Hub

https://kni.me/w/gKgdUPy-LvE4g6de

© 2022 KNIME AG. All rights reserved.

Demo – adult data classifier

▪ Adult data set: demographic data of 32k adults

▪ Goal: Binary classification whether the income is above $50k

▪ 13 features – numerical and nominal

▪ Train an ANN with 13-6-6-1 units

▪ ➔ Demo with KNIME Analytics Platform

42

© 2022 KNIME AG. All rights reserved.

Demo – adult data classifier

43

Download the workflow from the KNIME Hub

https://kni.me/w/a59OzucUevmiD5Fz

Computer vision:
Challenges working with image data

© 2022 KNIME AG. All rights reserved.

Why is Computer Vision Important?

▪ Increasing amount of video and image data
▪ 30 000 minutes of video are uploaded to YouTube every minute

▪ Many application areas and use cases:
▪ Image classification / image recognition

▪ Detecting of diseases

▪ Detecting of anomalies

▪ Face recognition to unlock a phone or door

▪ Object detection

▪ Marking objects in an image, e.g., traffic signs

▪ Semantic segmentation

▪ Neural style transfer

45

© 2022 KNIME AG. All rights reserved.

How Can We Represent a Gray-Scale Image?

▪ A gray-scale image can be stored in a matrix

▪ Each cell represents one pixel of the image

46

0 0 0 0 0

0 0 0.5 1 0

0 0.5 1 0.5 0

0 1 0.5 0 0

0 0 0 0 0

=

© 2022 KNIME AG. All rights reserved.

How Can We Represent a Colored Image?

▪ A colored image can be encoded via the intensity of red, green, and blue for

each pixel.

➔ It can be stored in a tensor with one channel for each color
▪ Example: n x m pixel image with k channels can be stored in a tensor of size n x m x k.

47

0.8 0.6 … 0.6 0.9

0.1 0 0.5 1 0

⋮ 0.5 1 0.5 0

0.8 1 0.5 0 0

0.6 0 0 0 0

0.1 0.5 … 0.5 0.2

0.2 0 0.5 1 0

⋮ 0.5 1 0.5 0

0.1 1 0.5 0 0

0.2 0 0 0 0

0.1 0.1 … 0.1 0.3

0.3 0.2 … 0.1 0.1

⋮ ⋮ … ⋮ ⋮

0.8 0.7 … 0.8 0.8

0.8 0.6 … 0.6 0.9

=

© 2022 KNIME AG. All rights reserved.

Problems with FFNN for Image Classification

▪ Goal: Train network to recognize x’s

▪ Approach: Flatten the image and apply a feed forward neural network

▪ Problem: A lot of variables / weights
▪ Example: Image with 224 x 224 pixels with 3 channels and 100 neurons in the next layer

➔ 150,528 inputs ➔ 15,052,800 weights in the first layer.

▪ Unmanageable and likely leads to overfitting during training

48

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 -11 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

−1
−1
⋮
1
−1
⋮
−1
−1

𝑥1

𝑥2

⋮

𝑥81

𝑎1
1

𝑎2
1

𝑎1
𝑘

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑦1

© 2022 KNIME AG. All rights reserved.

Problems with FFNN for Image Classification

▪ Goal: Train network to recognize x’s

▪ Approach: Flatten the image and apply a feed forward neural network

▪ Problem: Loss of spatial dependencies

49

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 -11 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

−1
−1
⋮
1
−1
⋮
−1
−1

𝑥1

𝑥2

⋮

𝑥81

𝑎1
1

𝑎2
1

𝑎1
𝑘

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑦1

© 2022 KNIME AG. All rights reserved.

Challenge: Different Variations

▪ Goal: Train network to recognize x’s

50

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 -11 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 -1 1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 1 -1 -1

-1 -1 -1 1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

© 2022 KNIME AG. All rights reserved.

Different Variations

51

Viewpoint variations

Illumination conditions

Deformations

Intra-class variations

Source: http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

© 2022 KNIME AG. All rights reserved.

Use Filter to Check for Different Features

52

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 -11 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 1

-1 1 -1

1 -1 1

1 -1

-1 1

-1 -1

1 -1

Check for crosses
Check for arms going from

lower right to top left

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 1 -1 -1

-1 1 -1 -1 -1 1 -1 -1 -1

-1 -1 1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 1 -1 -1

-1 -1 -1 1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

Check for arms going from

lower left to top right

Convolution & pooling layers

© 2022 KNIME AG. All rights reserved.

How Can We Apply a Filter

▪ Goal of a filter:
▪ High value if the feature is in an image patch

▪ Low value if the feature is not in an image patch

▪ Idea:
▪ Use a kernel / matrix and place it on top of different parts of the image

▪ Multiply the pixel value with the according kernel value and sum up the values

54

-1 -1 -1 -1 -1 -1 -1 -1 -1

-1 1 -1 -1 -1 -1 -1 1 -1

-1 -1 1 -1 -1 1 1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 -1 -1 1 -1 -1 -1 -1

-1 -1 -1 1 -1 1 -1 -1 -1

-1 -1 1 -1 -1 -1 1 -1 -1

-1 -11 -1 -1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1

1 -1 -1

-1 1 -1

-1 -1 1

𝟏 ∗ 𝟏 + −𝟏 ∗ −𝟏 + −𝟏 ∗ −𝟏
+ −𝟏 ∗ −𝟏 + 𝟏 ∗ 𝟏 + −𝟏 ∗ −𝟏
+ −𝟏 ∗ −𝟏 + −𝟏 ∗ −𝟏 + 𝟏 ∗ 𝟏 = 𝟗

1 -1 -1

-1 1 -1

-1 -1 1

(−𝟏) ∗ 𝟏 + −𝟏 ∗ (−𝟏) + 𝟏 ∗ −𝟏
+ −𝟏 ∗ −𝟏 + 𝟏 ∗ 𝟏 + −𝟏 ∗ (−𝟏)
+𝟏 ∗ −𝟏 + −𝟏 ∗ −𝟏 + (−𝟏) ∗ 𝟏 = 𝟏

Note: In the deep learning community this operation is called a convolution and is represented via an

asterisk ∗. Strictly mathematical it is a cross correlation.

∗ =

∗ =

© 2022 KNIME AG. All rights reserved.

9 -3 1

-3 5 -3

1 -3 9

1 -1 -1 -1 1

-1 1 -1 1 -1

-1 -1 1 -1 -1

-1 1 -1 1 -1

1 -1 -1 -1 1

Applying Multiple Filters

55

1 -1 -1

-1 1 -1

-1 -1 1

5 -7 5

-7 9 -7

5 -7 5

1 -1 1

-1 1 -1

1 -1 1

-1 -1 -1

-1 1 -1

1 -1 -1

Kernel / Filter Output

1 -3 9

-3 5 -3

9 -3 1

∗ =

∗ =

∗ =

Feature map

99 -39 -3 19 -3 1

-3

9 -3 1

-3 5

9 -3 1

-3 5 -3

9 -3 1

-3 5 -3

1

9 -3 1

-3 5 -3

1 -3

9 -3 1

-3 5 -3

1 -3 9

5 -7 5

-7 9 -7

5 -7 5

1 -3 9

-3 5 -3

9 -3 1

© 2022 KNIME AG. All rights reserved.

Impact of Handcrafted Kernel

56

0 1 0
0 1 0
0 1 0

−1 −1 −1
−1 8 −1
−1 −1 −1

Vertical line

detection

Edge

detection

Original image ResultKernel

© 2022 KNIME AG. All rights reserved.

One Way to Classify Images

1. Use domain knowledge to define important features

2. Try to detect these features

▪ Problem: Handcrafting different filters is hard

▪ Solution: Use a Convolutional Neural Network (CNN)
▪ Kernel / filters trained as part of the network to extract features

▪ Extracted features are used by the network for the classification task

57

Cat

© 2022 KNIME AG. All rights reserved.

Convolutional Neural Network (CNN)

▪ A CNN is a neural network with at least one convolutional layer.

▪ Instead of handcrafting different features a CNN learns a hierarchy of features

using multiple convolution layers that detect different features.

58

Images from: http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

© 2022 KNIME AG. All rights reserved.

How Do Convolutional Layers Works?

▪ Idea: Instead of connecting every neuron to the new layer, a sliding window is

used.

59

Image from: https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-

3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

© 2022 KNIME AG. All rights reserved.

How Do Convolutional Layers Work?

▪ Idea:
▪ Use a kernel / weight matrix and slide it over the image

▪ At each position: Apply the convolution and a non-linear activation, e.g. ReLU

▪ The weights of the kernel are learned during training

▪ Note: These are similar steps like in a feed forward neural network
▪ Convolution ෝ= Weighted sum of inputs

60

1 -1 -1 1 1

-1 1 -1 1 -1

-1 -1 1 -1 -1

-1 1 -1 1 -1

1 -1 -1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

9 -3 1

-3 5 -3

1 -3 9

1 -1 -1

-1 1 -1

-1 -1 1
9 0 1

0 5 0

1 0 9

∗ = ReLU

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝑤7 𝑤8 𝑤9

𝒘𝟏 𝒘𝟐 𝒘𝟑

𝒘𝟒 𝒘𝟓 𝒘𝟔

𝒘𝟕 𝒘𝟖 𝒘𝟗

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

𝑎1 𝑎2 𝑎3

𝑎4 𝑎5 𝑎6

𝑎7 𝑎8 𝑎9

© 2022 KNIME AG. All rights reserved.

Keras Convolution 2D Layer

61

© 2022 KNIME AG. All rights reserved.

Pooling Layer

▪ Idea: Replace the area of an image or

feature map with a summary statistic.

▪ Example: Replace each 2x2 area with

the
▪ Maximum value (Max pooling)

▪ Mean value (Average pooling)

▪ Pooling layers are often used in

between convolutional layers to
▪ Increase the receptive field of the following

layers

▪ Reduce computational complexity

▪ No parameters to learn

62

© 2022 KNIME AG. All rights reserved.

Keras Max Pooling 2D Layer Node

63

© 2022 KNIME AG. All rights reserved.

CNN for Image Classification

64

Image from: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

© 2022 KNIME AG. All rights reserved.

Image Classification: Cats & Dogs Data

65

Kaggle Dogs vs Cats Challenge
https://www.kaggle.com/c/dogs-vs-cats/overview

Classification with KNIME

https://www.kaggle.com/c/dogs-vs-cats/overview

© 2022 KNIME AG. All rights reserved.

Simple CNN for Image Classification

66

What are the best

setting options for the #

filter, kernel size, etc.?

Look at some popular

CNNs
Download the workflow from the KNIME Hub

https://kni.me/w/RZjun0ed5Uu11SaE

Transfer learning

© 2022 KNIME AG. All rights reserved.

Standard vs. Transfer Learning

Standard learning

68

Transfer learning

Dataset for

task A

Model for

task A

Dataset for

task B

Model for

task B

Dataset for

task A

Model for

task A

Dataset for

task B

Model for

task B
Knowledge

© 2022 KNIME AG. All rights reserved.

Cancer Cell Classification with Transfer Learning

▪ Transfer learning can be adapted to

a wide range of image classification

problems

▪ Task: Classify histopathology slide

images and about the type of

lymphoma
▪ chronic lymphocytic leukemia (CLL)

▪ follicular lymphoma (FL)

▪ mantle cell lymphoma (MCL)

▪ Reuse VGG16 network

70

This Photo by Unknown

Author is licensed under

CC BY-SA

VGG16 Cat

VGG16 New CLL

Original Task

New Task

Image From:

https://ome.grc.nia.nih.

gov/iicbu2008/lympho

ma/index.html

https://commons.wikimedia.org/wiki/File:Golden_tabby_and_white_kitten_n01.jpg
https://creativecommons.org/licenses/by-sa/3.0/
https://ome.grc.nia.nih.gov/iicbu2008/lymphoma/index.html

© 2022 KNIME AG. All rights reserved.

Popular CNN: VGG-16 (2015)

71

224 x 224 x 3 224 x 224 x 64

112 x 112 x 128

56 x 56 x 256

28 x 28 x 512

14 x 14 x 512

7 x 7 x 512

1 x 1 x 4096 1 x 1 x 1000

3x3 convolution + ReLU

2x2 max pooling

fully connected + ReLU

softmax

© 2022 KNIME AG. All rights reserved.

Transfer Learning for Image Classification

72

Use all layers

until here, without

retraining

VGG16 Architecture: https://neurohive.io/en/popular-networks/vgg16/

Replace and

retrain this part

https://neurohive.io/en/popular-networks/vgg16/

© 2022 KNIME AG. All rights reserved.

Transfer Learning for Image Classification

73

Download the workflow from the KNIME Hub

https://kni.me/w/JtOeEpsDDfy1CgbH

© 2022 KNIME AG. All rights reserved.

Transfer Learning for Image Classification: Option 2

74

Training time:

Less than 90 seconds

Use trained VGG16 for

feature extraction

Download the workflow from the KNIME Hub

https://kni.me/w/BqIDZRxKymTmg1zL

Sequential data & RNN

© 2022 KNIME AG. All rights reserved.

Text Generation: What Is The Next Word?

▪ Text is a sequence of words or characters ➔ sequential data

▪ Task: Predict the next word in a sequence

▪ The last word in the sequence is “the”. What is the next word?

76

Example workflows are available on the

tree ?

hub ?

elephants ?

Requirement 1: The network must be able to take context information into account

© 2022 KNIME AG. All rights reserved.

Text Generation: What Is The Next Word?

▪ The hotel was good, not bad at all.

This made our vacation _______

77

▪ The hotel was bad, not good at all.

This made our vacation _______

good

vacation

Requirement 2: The network must be able to take order into account

© 2022 KNIME AG. All rights reserved.

Text Generation: What Is The Next Word?

78

Example 1: Example 2:

Hi Suzie,

Our week in the alps

was amazing.

Looking forward to

Input length = 2 words Input length = 12 words

Requirement 3: The network needs to handle different sequence lengths

Hi Suzie,

© 2022 KNIME AG. All rights reserved.

Text Generation: What Is The Next Word?

▪ Time information can be either in the beginning, the middle, or the end of a

sentence

79

Requirement 4: The network must be position independent

I was shopping,

yesterday. I will wear

my new …

Yesterday, I was

shopping. I will wear

my new …

© 2022 KNIME AG. All rights reserved.

Feed Forward Neural Network for Sequential Data

80

▪ Idea: Use a feed forward neural network to

handle sequential data

▪ Doesn’t meet the requirements of

sequential data
▪ Doesn’t take word order into account

▪ Fixed input ➔ can’t handle different sequence length

▪ Doesn’t share parameters ➔ not position invariant

▪ Solution: Recurrent Neural Network (RNN)

𝑥1

𝑥2

⋮

𝑥𝑛

⋮

∑ 𝑓3

∑ 𝑓3

𝑦1

𝑦2

∑ 𝑓2

∑ 𝑓2

𝑾𝟐 𝑾𝟑

© 2022 KNIME AG. All rights reserved.

Recurrent Neural Networks

▪ Recurrent Neural Networks (RNNs) are a family of neural networks

suitable for processing of sequential data

▪ Key idea: use a loop connection

▪ RNNs are used for all sorts of tasks:
▪ Language modeling / Text generation

▪ Text classification

▪ Neural machine translation

▪ Text summarization

▪ Image captioning

▪ Speech to text

▪ Demand prediction

▪ Stock price prediction

▪ …

81

© 2022 KNIME AG. All rights reserved.

From Feed Forward to Recurrent Neural Networks

𝑥1

𝑥2

∑ 𝑓

∑ 𝑓

∑ 𝑓

∑ 𝑓 𝑦 𝑥

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑦

𝑾𝒙
𝟐 𝑾𝒚

𝟑

82

© 2022 KNIME AG. All rights reserved.

From Feed Forward to Recurrent Neural Networks

𝒙𝒕=𝟏

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦1

𝒙𝒕=𝟐

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦2

𝒙𝒕=𝟑

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦3

𝒙𝒕=𝟒

∑ 𝑓

∑ 𝑓

∑ 𝑓

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑦4

83

𝒉𝟎 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒

© 2022 KNIME AG. All rights reserved.

RNN Rolled and Unrolled Representation

84

A

𝒙

𝒚

A = A feed forward network with one or multiple layers

A

𝑥1

𝑦1

A

𝑥2

𝑦2

A

𝑥3

𝑦3

A

𝑥4

𝑦4

A

𝑥5

𝑦5

© 2022 KNIME AG. All rights reserved.

Memory of an RNN

85

A

𝒙

𝒚

A = A feed forward network with one or multiple layers

𝑥1

𝑦1

𝑥2

𝑦2

A

𝑥3

𝑦3

𝑥4

𝑦4

𝑥5

𝑦5

Take context

information into

account

Handle

different

sequence

lengths

Take order into

account

Position

independent

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

𝑾𝒙
𝟐

𝑾𝒚
𝟑

© 2022 KNIME AG. All rights reserved.

Example: Language model

86

A

𝒙

𝒚

A = A feed forward network with one or multiple layers

A

Start

Token

I

A

I

like

A

like

to

A

to

go

A

go

sailing

© 2022 KNIME AG. All rights reserved.

The Math Behind An RNN

87

tanh

𝒙

𝒚

𝑥1

𝑦1

𝑥2

𝑦2

𝑥3

𝑦3

𝒉𝟐 = 𝒚𝟏 = tanh(𝑾𝒙𝒙𝟏 +𝑾𝒉𝒉𝟎)

𝒉𝟑 = 𝒚𝟐 = tanh(𝑾𝒙𝒙𝟐 +𝑾𝒉𝒉𝟏)

𝒉𝒏+𝟏 = 𝒚𝒏 = tanh(𝑾𝒙𝒙𝒏 +𝑾𝒉𝒉𝒏−𝟏)
⋮

tanh
𝒉𝟐 𝒉𝟑 𝒉𝟒

tanh tanh

© 2022 KNIME AG. All rights reserved.

RNN Architectures: Many to Many (Seq2Seq)

A A A

<sos>

A

like sailing

sailing like I

I

<eos>

Language model Neural machine translation

E E E

like sailing I

D D D

Ich gehe gerne

D

segeln

Ich gehe gerne

88

© 2022 KNIME AG. All rights reserved.

RNN Architectures: Many-to-One & One-to-Many

A A A A

I

A

like to go sailing

English

Language classification

One-to-many

A A A AA

Couple on sailing a lake

Image captioning

Many-to-one

89

© 2022 KNIME AG. All rights reserved.

Limitation of Simple RNNs

The “memory” of simple RNNs is sometimes too limited to be useful:

▪ “Cars drive on the ” (road)

▪ “I love the beach.

My favorite sound is the crashing of “ (cars? glass? waves?)

90

Long short-term memory (LSTM)

© 2022 KNIME AG. All rights reserved.

Long Short-Term Memory (LSTM) Units

Special type of unit with

▪ an additional cell state

▪ three gates
▪ Forget gate

▪ Input gate

▪ Output gate

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

92

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

© 2022 KNIME AG. All rights reserved.

Idea of a Gate

▪ A gate can be …

93

open

partially open

closed

1

(0,1)

0

Let all information through

Let part of the information through

Let no information through

© 2022 KNIME AG. All rights reserved.

LSTM Units

▪ Additional cell state makes it easier to remember information

▪ At each time step
1. The forget gate removes irrelevant information from the cell state

2. The input gate decides which information should be added to the cell state

3. The cell state is updated

4. The output gate decides which information to output and to send to the next time step

97

1

2

3

4

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

© 2022 KNIME AG. All rights reserved.

LSTM Layer Node

98

Optional input ports

for the hidden state

tensors

Size of the hidden

state vectors

Activate “Return

sequences” for

seq2seq models

Activate “Return

state” to use it

during deployment

© 2022 KNIME AG. All rights reserved.

Example: Text Classification

▪ Task: Assigning tags or categories to text according to its content

▪ Examples:
▪ Identify the underlying sentiment of movie / restaurant / product reviews, tweets etc.

▪ Positive

▪ Negative

▪ Classify vacation reviews. What is the review about?

▪ Hotel

▪ Flight

▪ Booking process

100

© 2022 KNIME AG. All rights reserved.

Use Case: Sentiment Analysis of Movie Reviews

101

LSTM LSTM LSTM LSTM

The

LSTM

movie was really nice

P(positive)

The movie

was really

nice

The movie

was nice

positive

negative

Preprocessing:

▪ Different sequence lengths
▪ Sequences within the same training batch must have the same length

▪ Solution: Truncate too long sequences and zero pad too short sequences

▪ Encoding
▪ Index encoding plus embedding layer

▪ Large number of different words: Define a fixed dictionary size and assign default (“unknown”) value

to all other words

Sigmoid

© 2022 KNIME AG. All rights reserved.

Use Case: Sentiment Analysis of Movie Reviews

102

LSTM LSTM LSTM LSTM

52

LSTM

29 8 1488 35

P(positive)

Embedding

Sigmoid

Preprocessing

Network

© 2022 KNIME AG. All rights reserved.

Text Classification: Sentiment Analysis

103

Sequence length

Dictionary size + 1

Dimension of the vector

space in which each word

is represented as a vector

Sequence of 128

dimensional vectors of

length 80

Not activated as it is a

sequence to one model

© 2022 KNIME AG. All rights reserved.

Text Classification: Sentiment Analysis

104

Download the workflow from the KNIME Hub

Batch size = 32, Epochs = 3, Optimizer = Adam

https://kni.me/w/NHJpmqsAJ3Ib-thH

© 2022 KNIME AG. All rights reserved.

To learn more...

▪ Codeless Deep Learning with KNIME—
Packt, 2020
▪ By Rosaria Silipo & Kathrin Melcher

105

© 2022 KNIME AG. All rights reserved.

Upcoming Online Courses

▪ Introduction to Text Processing
▪ Nov 28 – Dec 2, 10-11:30am CST

▪ https://www.knime.com/events/introduction-text-processing-2211

▪ Introduction to Time Series Analysis
▪ Nov 29 – Dec 2, 10-11:30am CST

▪ https://www.knime.com/events/introduction-time-series-analysis-2211

106

Use Code Joinus10 to get 10% discount on your registration

https://www.knime.com/events/introduction-text-processing-2211
https://www.knime.com/events/introduction-time-series-analysis-2211

Thank you!

107

This slide deck is available at
https://kni.me/s/4-i5-EcLrZwf5cxN

https://kni.me/s/4-i5-EcLrZwf5cxN

