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Material

▪ Berthold, Borgelt, Höppner, Klawonn, Silipo:
Guide to Intelligent Data Science, 2nd Edition
Springer, 2020.

▪ Tom Mitchell:
Machine Learning
McGraw Hill, 1997.

▪ David Hand, Heikki Mannila, Padhraic Smyth:
Principles of Data Mining
MIT Press, 2001.

▪ Michael Berthold, David Hand (eds):
Intelligent Data Analysis, An Introduction
Springer Verlag, 2003.
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What is Data Science?

[Wikipedia quoting Dhar 13, Leek 13]

Data science is a multi-disciplinary field that uses scientific methods, processes, 

algorithms and systems to extract knowledge and insights from structured and 

unstructured data.

[Fayyad, Piatetsky-Shapiro & Smyth 96]

Knowledge discovery in databases (KDD) is the process of 

(semi-)automatic extraction of knowledge from databases which is valid, 

previously unknown, and potentially useful.
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Some Clarity about Words

▪ (semi)-automatic: no manual analysis, though some user interaction required

▪ valid: in the statistical sense

▪ previously unknown: not explicit, no „common sense knowledge“

▪ potentially useful: for a given application

▪ structured data: numbers

▪ unstructured data: everything else (images, texts, networks, chem. compounds, 

…)
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Use Case Collection
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Exercise: Let’s Collect some Use Cases
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Churn Prediction 

7

Model

CRM System

Data about your customer

▪ Demographics

▪ Behavior

▪ Revenues

▪ Churn Prediction

▪ Upselling Likelihood

▪ Product Propensity /NBO

▪ Campaign Management

▪ Customer Segmentation

▪ …
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Customer Segmentation
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Model

CRM System

Data about your customer

▪ Demographics

▪ Behavior

▪ Revenues

▪ Churn Prediction

▪ Upselling Likelihood

▪ Product Propensity /NBO

▪ Campaign Management

▪ Customer Segmentation

▪ …
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Risk Assessment
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Model
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Demand Prediction

▪ How many taxis do I need in NYC on Wednesday at noon?
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Model
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Recommendation Engines / Market Basket Analysis
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Model

Recommendation

IF ➔
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Fraud Detection
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Transactions

▪ Trx 1

▪ Trx 2

▪ Trx 3

▪ Trx 4

▪ Trx 5

▪ Trx 6

▪ …

Suspicious Transaction

Model
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Sentiment Analysis
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Anomaly Detection

Predicting mechanical failure as late as possible but before it happens

Only some Spectral Time Series shows the break down 
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Basic Concepts in Data Science
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What is a Learning Algorithm?

𝑦 = 𝑓( 𝜷, 𝑿 ) with 𝜷 = [𝛽1, 𝛽2, … , 𝛽𝑚]
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Model

𝑿
=

(𝑥
1 ,𝑥

2 ,…
,𝑥
𝑛
)

𝑦

▪ Class

▪ Label

▪ Target

▪ Output feature/attribute

▪ Dependent variable

▪ Input features

▪ Input attributes

▪ Independent variables

Model parameters

A learning algorithm adjusts (learns) the model parameters 𝜷 throughout a 

number of iterations to maximize/minimize a likelihood/error function on 𝑦.
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Algorithm Training / Learning

▪ The model learns / is trained during the learning / training phase to produce 

the right answer y (a.k.a., label)

▪ That is why machine learning ☺

▪ Many different algorithms for three ways of learning:
▪ Supervised

▪ Unsupervised

▪ Semi-supervised

18
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Supervised Learning

▪ 𝑿 = (𝑥1, 𝑥2) and 𝑦 = {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑎𝑦}

▪ A training set with many examples of (𝑿, 𝑦)

▪ The model learns on the examples of the training set to produce the right value 

of y for an input vector 𝑿

19

x1

x2
𝑿

Age

Money

Temperature

Speed

Number of taxi

...

𝑦

Sunny vs. Cloudy

Healthy vs. Sick

Churn vs. Remain

Increase vs. 

Deacrease

...

model
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Supervised Learning: Classification vs. Regression

▪ 𝑿 = (𝑥1, 𝑥2) and 𝑦 = {𝑙𝑎𝑏𝑒𝑙 1, … , 𝑙𝑎𝑏𝑒𝑙 𝑛} or 𝑦 ∈ ℝ

▪ A training set with many examples of (𝑿, 𝑦)

▪ The model learns on the examples of the training set to produce the right value 

of 𝑦 for an input vector 𝑿
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Classification

y = {yellow, gray}

y = {churn, no churn}

y = {increase, unchanged, decrease}

y = {blonde, gray, brown, red, black}

y = {job 1, job 2, ... , job n}

Numerical Predictions (Regression)

y = temperature

y = number of visitors

y = number of kW

y = price

y = number of hours
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Process Overview for Supervised Learning
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Training vs. Testing: Partitioning

▪ Training phase: the algorithm trains a model using the data in the training set

▪ Testing phase: a metric measures how well the model is performing on data in 

a new dataset (the test set)
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Test SetTraining Set Evaluation Set*

* sometimes
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Unsupervised Learning

▪ 𝑿 = (𝑥1, 𝑥2) and 𝑦 = {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑎𝑦}

▪ A training set with many examples of (𝑿, 𝑦)

▪ The model learns to group the examples 𝑿 of the training set based on similarity 

(closeness) or probability
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Semi-Supervised Learning

▪ 𝑿 = (𝑥1, 𝑥2) and 𝑦 = {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑔𝑟𝑎𝑦}

▪ A training set with many examples of 𝑿, 𝑦 and some samples 𝑿, 𝑦

▪ The model labels the data in the training set using a modified unsupervised 

learning procedure
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The CRISP-DM Cycle
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https://en.wikipedia.org/wiki/Cross_Industry_Standard_

Process_for_Data_Mining

https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining
https://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining


© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

The Data Science Life Cycle
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Consume & 

Interact

Model & 

Visualize

Optimize & Capture Monitor & Update

Validate & DeployBlend & Transform

Production

ProcessCreation Production



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

KNIME Software for the Entire Data Science Life Cycle

27

Business Hub
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Exercise

▪ Let’s recap the different types of data science problems from a technical 

perspective

▪ Let’s match the collected use cases to different data science problems

28



Decision Tree Algorithm
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Goal: A Decision Tree

30

Outlook Wind Temp (Winter) 

Storage

Sailing

sunny 3 30 no yes

sunny 3 25 no no

rain 12 15 no yes

overcast 15 2 yes no

rain 16 25 no yes

sunny 14 18 no yes

rain 3 5 yes no

sunny 9 20 no yes

overcast 14 5 yes no

sunny 1 7 yes no

rain 4 25 no no

rain 14 24 no yes

sunny 11 20 no yes

sunny 2 18 no no

overcast 8 22 no yes

overcast 13 24 no yes
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How can we Train a Decision Tree with KNIME Analytics Platform

31
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Option 1

Option 2

Goal: A Decision Tree

32

Outlook Wind Temp Storage Sailing

sunny 3 30 yes yes

sunny 3 25 yes no

rain 12 15 yes yes

overcast 15 2 no no

rain 16 25 yes yes

sunny 14 18 yes yes

rain 3 5 no no

sunny 9 20 yes yes

overcast 14 5 no no

sunny 1 7 no no

rain 4 25 yes no

rain 14 24 yes yes

sunny 11 20 yes yes

sunny 2 18 yes no

overcast 8 22 yes yes

overcast 13 24 yes yes

How can we measure which is 

the best feature for a split?
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Possible Split Criterion: Gain Ratio

Based on entropy = measure for information / uncertainty

33

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝 = −σ𝑖=0
𝑛 𝑝𝑖 log2 𝑝𝑖 for 𝑝 ∈ ℚ𝑛

𝑝1 = Τ7 13

𝑝2 = Τ6 13

𝑝1 = Τ13
13 = 1

𝑝2 = Τ0 13 = 0

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝 = − Τ7 13 log2 Τ7 13 + Τ6 13 log2 Τ6 13

= 0,995 = 0

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑝 = − Τ13
13 log2 Τ13

13 + Τ0 13 log2 Τ0 13
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Possible Split Criterion: Gain Ratio

34

𝑤1 = Τ6 13 𝑤2 = Τ7 13

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐵𝑒𝑓𝑜𝑟𝑒

= 𝐸𝑛𝑡𝑟𝑜𝑝𝑦
7

13
,
6

13

𝐸𝑛𝑡𝑟𝑜𝑝𝑦1 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦
5

6
,
1

6
𝐸𝑛𝑡𝑟𝑜𝑝𝑦2 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

2

7
,
5

7

Split criterion:

Next splitting feature: Feature with

highest 𝐺𝑎𝑖𝑛

Problem: Favors features with many 

different values

Solution: Gain Ratio

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 =
𝐺𝑎𝑖𝑛

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜
=

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐵𝑒𝑓𝑜𝑟𝑒−σ𝑖=1
𝑘 𝑤𝑖 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑖

− σ𝑖=1
𝑘 𝑤𝑖 𝑙𝑜𝑔2 𝑤𝑖

𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐵𝑒𝑓𝑜𝑟𝑒 −
6

13
𝐸𝑛𝑡𝑟𝑜𝑝𝑦1 −

7

13
𝐸𝑛𝑡𝑟𝑜𝑝𝑦2

𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐵𝑒𝑓𝑜𝑟𝑒 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴𝑓𝑡𝑒𝑟
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𝐺𝑖𝑛𝑖2 = 𝐺𝑖𝑛𝑖 Τ2 7, Τ
5
7

Possible Split Criterion: Gini Index
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𝑝1 = Τ7 13

𝑝2 = Τ6 13

𝐺𝑖𝑛𝑖(𝑝) = 1 − σ𝑖=1
𝑛 𝑝𝑖

2 for 𝑝 ∈ ℚ𝑛

𝐺𝑖𝑛𝑖 𝑝 = 1 −
72

132
−

62

132

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 = σ𝑖=1
𝑛 𝑤𝑖𝐺𝑖𝑛𝑖𝑖

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 =
6

13
𝐺𝑖𝑛𝑖1 +

7

13
𝐺𝑖𝑛𝑖2

𝑤1 = Τ6 13

𝐺𝑖𝑛𝑖1 = 𝐺𝑖𝑛𝑖 Τ5 6, Τ
1
6

𝑤2 = Τ7 13

Split criterion:

Next splitting feature:

Feature with lowest 𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥

Gini index is based on Gini impurity:
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What happens for numerical Input Features?

Subset for each value? – NO

Solution: Binary splits 

36

𝑥 = 9.2 𝑥 = 2 𝑥 = 12.6

𝑥 = 1.7

𝑥 = 7.4

𝑥 = 3.6

𝑥 = 8

𝑥 = 3.4𝑥 = 1.2 𝑥 = 4.9

𝑥 = 2.3
< 𝑥 ≥ 𝑥
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The Deeper the Better?!

37

𝑡𝑒
𝑚
𝑝

𝑤𝑖𝑛𝑑1 2 3 4 5 6 7

5

10

15

20

25

30

< 4≥ 4

temp temp

< 25≥ 25
≥ 10

< 10

wind

< 6≥ 6

temp

temp

wind

wind

≥ 22 < 22

≥ 26 < 26

< 6≥ 6
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Overfitting vs Underfitting

38

Underfitted Generalized Overfitted

Model overlooks 

underlying 

patterns in the 

training set

Model captures 

correlations in the 

training set

Model memorizes 

the training set 

rather then finding 

underlying patterns
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Overfitting vs Underfitting

39

OverfittedGeneralizedUnderfitted

Underfitting Overfitting

▪ A model that can neither model the 

training data nor generalize to new data

▪ Model that fits the training data too 

well, including details and noise

▪ Negative impact on the model’s ability 

to generalize
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Controlling the Tree Depth

40

Goal: Tree that generalizes to new data and doesn’t overfit

Pruning Early stopping

Idea: Cut branches that seem as 

result from overfitting

Idea: Define a minimum size for the 

tree leaves

Techniques:

• Reduced Error Pruning

• Minimum description length
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Pruning - Minimum Description Length Pruning (MDL)

Definition: Description length = #bits(tree) + #bits(misclassified samples)

41

wind

12 0 6 7

wind

12 0 1 13

wind

temp

12 0

wind

temp
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m
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Tree 1 Tree 2 Note

Many misclassified 

samples in tree 1

➔ DL(Tree 1) > DL(Tree 2)

➔ Select Tree 2

Only 1 misclassified sample 

in tree 1

➔ DL(Tree 1) < DL(Tree 2)

➔ Select Tree 1
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Applying the Model – What are the Outputs?

42
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No True Child Strategy

43

Outlook Wind Temp Storage Sailing

sunny 3 30 yes yes

sunny 3 25 yes no

rain 12 15 yes yes

rain 16 25 yes yes

sunny 14 18 yes yes

rain 3 5 no no

sunny 9 20 yes yes

sunny 1 7 no no

rain 4 25 yes no

rain 14 24 yes yes

sunny 11 20 yes yes

sunny 2 18 yes no

overcast 8 22 yes yes

overcast 13 24 yes yes

outlook

sunny rain

Training:

What happens with outlook = overcast?

T
ra

in
in

g
 

T
e
s
ti
n
g



Evaluation of Classification 
Models
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Evaluation Metrics

▪ Why evaluation metrics?
▪ Quantify the power of a model

▪ Compare model configurations and/or models, and select the best performing one

▪ Obtain the expected performance of the model for new data

▪ Different model evaluation techniques are available for
▪ Classification/regression models

▪ Imbalanced/balanced target class distributions

45
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Overall Accuracy

▪ Definition:

𝑶𝒗𝒆𝒓𝒂𝒍𝒍 𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
# 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏𝒔 (𝒕𝒆𝒔𝒕 𝒔𝒆𝒕)

# 𝑨𝒍𝒍 𝒆𝒗𝒆𝒏𝒕𝒔 (𝒕𝒆𝒔𝒕 𝒔𝒆𝒕)

▪ The proportion of correct classifications

▪ Downsides:
▪ Only considers the performance in general and not for the different classes

▪ Therefore, not informative when the class distribution is unbalanced

46
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Confusion Matrix for Sailing Example

▪ Rows – true class values

▪ Columns – predicted class values 

▪ Numbers on main diagonal – correctly classified samples

▪ Numbers off the main diagonal – misclassified samples

47

Sailing

yes / no

Predicted

class: yes

Predicted 

class: no

True class:

yes
22 3

True class:

no
12 328

Sailing

yes / no

Predicted

class: yes

Predicted 

class: no

True class:

yes
0 25

True class:

no
0 340

Ac𝑐𝑢𝑟𝑎𝑐𝑦 =
350

365
= 0,96 Ac𝑐𝑢𝑟𝑎𝑐𝑦 =

340

365
= 0,93
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Confusion Matrix

Arbitrarily define one class value as POSITIVE and the remaining class as

NEGATIVE

Use these four statistics to calculate other evaluation metrics, such as overall

accuracy, true positive rate, and false positive rate

48

TRUE POSITIVE (TP): Actual and

predicted class is positive

TRUE NEGATIVE (TN): Actual and

predicted class is negative

FALSE NEGATIVE (FN): Actual class

is positive and predicted negative

FALSE POSITIVE (FP): Actual class

is negative and predicted positive

Predicted class 

positive

Predicted class 

negative

True class

positive

TRUE 

POSITIVE 

FALSE 

NEGATIVE 

True class

negative

FALSE 

POSITIVE 

TRUE 

NEGATIVE 
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ROC Curve

▪ The ROC Curve shows the false positive rate and true positive rate for

different threshold values
▪ False positive rate (FPR) 

▪ negative events incorrectly classified as positive

▪ True positive rate (TPR) 

▪ positive events correctly classified as positive

49

Optimal 

threshold

Predicted 

class positive

Predicted class 

negative

True 

class

positive

True Positive 

(TP)

False Negative 

(FN)

True 

class

negative

False

Positive (FP)

True Negative 

(TN)

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Cohen‘s Kappa (κ) vs. Overall accuracy

50

Overall 

accuracy

𝑝𝑒1 =
19

100
×

20

100

𝑝𝑒2 =
81

100
×

80

100

𝑝𝑒 = 𝑝𝑒1 + 𝑝𝑒2 = 0.686

𝑝0 =
89

100
= 0.89

𝜅 =
𝑝0−𝑝𝑒

1−𝑝𝑒
=

0.204

0.314
≈ 0.65

𝑝𝑒1 =
11

100
×

20

100

𝑝𝑒2 =
89

100
×

80

100

𝑝𝑒 = 𝑝𝑒1 + 𝑝𝑒2 = 0.734

𝑝0 =
81

100
= 0.81

𝜅 =
𝑝0−𝑝𝑒

1−𝑝𝑒
=

0.076

0.266
= 0.29

Switch TP 

and FP

κ = 1: perfect model 

performance

κ = 0: the model performance 

is equal to a random classifier

Positive Negative

Positive 14 6

Negative 5 75

Positive Negative

Positive 6 14

Negative 5 75
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Exercise: Decision_Tree_exercise

▪ Dataset: Sales data of individual residential properties in Ames, Iowa from 2006 

to 2010. 

▪ One of the columns is the overall condition ranking, with values between 1 and 

10. 

▪ Goal: train a binary classification model, which can predict whether the overall 

condition is high or low.

You can download the training workflows from the KNIME Community Hub: 

https://hub.knime.com/knime/spaces/Education/latest/Courses/

51

https://hub.knime.com/knime/spaces/Education/latest/Courses/
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Exercise Session 1

▪ Import the course material to KNIME Analytics Platform

52

1. Right click on 

LOCAL and select 

Import KNIME 

Workflow….

2. Click on Browse and select 

downloaded .knar file

3. Click on Finish
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Exercise: Decision_Tree_exercise

53



Regression

54
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Regression Analysis

▪ Goal: Explain how target attribute depends on descripitive attributes

▪ Target attribute ➔ Response variable, Target

▪ Descriptive attribute(s) ➔ Regressor variable(s), Features

▪ Commnality with models of Classification

▪ First construct the model

▪ Second, use the model to predict

▪ Difference from Classification
▪ Classification model aims to predict categorical class labels

▪ Regression model aims at predicting continous values

55
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Regression

Applications
▪ Forecasting

▪ Quantitative Analysis

Methods
▪ Linear

▪ Polynomial

▪ Regression Trees

▪ Partial Least Squares

56

Predict numeric outcomes on existing data (supervised)



Linear Regression Algorithm
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Regression Line

▪ Given a data set with two continuous attributes, 𝑥 and 𝑦

▪ There is an approximate linear dependency between 𝑥 and 𝑦

58

𝑦 ≈ 𝑎 + 𝑏𝑥
Intercept Slope

x

y

Intercept 𝑎

1

𝑏 Slope
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Regression Line

▪ Given a data set with two continuous attributes, 𝑥 and 𝑦

▪ There is an approximate linear dependency between 𝑥 and 𝑦

▪ We find a regression line (i.e., determine the parameters 𝑎 and 𝑏) such that the 

line fits the data as well as possible

▪ Examples:
▪ Trend estimation (e.g., oil price over time)

▪ Epidemiology (e.g., cigarette smoking vs. lifespan)

▪ Finance (e.g., return on investment vs. return on all risky assets)

▪ Economics (e.g., spending vs. available income)

59

𝑦 ≈ 𝑎 + 𝑏𝑥
Intercept Slope
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Linear Regression

Predicts the values of the target variable y

based on a linear combination of

the values of the input feature(s) xj

▪ Simple regression: one input feature → regression line

▪ Multiple regression: several input features → regression hyper-plane

▪ Residuals: differences between observed and predicted values (errors)

Use the residuals to measure the model fit

60

p input features: ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑝𝑥𝑝

Two input features: ො𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2
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Simple Linear Regression

Optimization goal: minimize sum of squared residuals

61

x

y

Residual

ei

σ𝑖=1
𝑛 𝑒𝑖

2 = σ𝑖=1
𝑛 𝑦𝑖 − ෝ𝑦𝑖

2

yi
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Simple Linear Regression

▪ Think of a straight line ො𝑦 = 𝑓 𝑥 = 𝑎 + 𝑏𝑥

▪ Find 𝑎 and 𝑏 to model all observations (𝑥𝑖 , 𝑦𝑖) as close as possible

▪ ➔ SSE 𝐹 𝑎, 𝑏 = σ𝑖=1
𝑛 (𝑓 𝑥 − 𝑦𝑖)

2 = σ𝑖=1
𝑛 (𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)

2 should be minimal

▪ That is:

𝜕𝐹

𝜕𝑎
=

𝑖=1

𝑛

2 𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖 = 0

𝜕𝐹

𝜕𝑏
=

𝑖=1

𝑛

2 𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖 𝑥𝑖 = 0

▪ ➔ A unique solution exists for 𝑎 and 𝑏

62
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Linear Regression

▪ Optimization goal: minimize the squared residuals

▪ Solution:

▪ Computational issues:
▪ 𝑋𝑇𝑋 must have full rank, and thus be invertible 

(Problems arise if linear dependencies between input features exist)

▪ Solution may be unstable, if input features are almost linearly dependent

63

σ𝑖=1
𝑛 𝑒𝑖

2 = σ𝑖=1
𝑛 𝑦𝑖 − σ𝑗=0

𝑛 𝑎𝑗𝑥𝑗,𝑖
2
= 𝑦 − 𝑎𝑋 𝑇 𝑦 − 𝑎𝑋

ො𝑎 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦
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Linear Regression: Summary

▪ Positive:
▪ Strong mathematical foundation

▪ Simple to calculate and to understand

(For moderate number of dimensions)

▪ High predictive accuracy

(In many applications)

▪ Negative:
▪ Many dependencies are non-linear

(Can be generalized)

▪ Model is global and cannot adapt well to locally different data distributions

But: Locally weighted regression, CART

64
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Polynomial Regression

Predicts the values of the target variable y

based on a polynomial combination of degree d of

the values of the input feature(s) xj

▪ Simple regression: one input feature → regression curve

▪ Multiple regression: several input features → regression hypersurface

▪ Residuals: differences between observed and predicted values (errors)

Use the residuals to measure the model fit

65

ỹ = 𝑎0 + σ𝑗=1
𝑝

𝑎𝑗,1𝑥𝑗 + σ𝑗=1
𝑝

𝑎𝑗,2𝑥𝑗
2 +⋯+ σ𝑗=1

𝑝
𝑎𝑗,𝑑𝑥𝑗

𝑑



Evaluation of Regression Models
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Numeric Errors: Formulas

Error Metric Formula Notes

R-squared
1 −

σ𝑖=1
𝑛 (𝑦𝑖−𝑓(𝑥𝑖))

2

σ𝑖=1
𝑛 (𝑦𝑖−𝑦)2

Universal range: the closer to 1 the 

better

Mean absolute error (MAE) 1

𝑛


𝑖=1

𝑛

|𝑦𝑖 − 𝑓(𝑥𝑖)|
Equal weights to all distances

Same unit as the target column

Mean squared error (MSE) 1

𝑛


𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))
2

Common loss function

Root mean squared error (RMSE)
1

𝑛


𝑖=1

𝑛

(𝑦𝑖 − 𝑓(𝑥𝑖))2

Weights big differences more

Same unit as the target column

Mean signed difference 1

𝑛


𝑖=1

𝑛

𝑦𝑖 − 𝑓 𝑥𝑖
Only informative about the direction 

of the error

Mean absolute percentage error 

(MAPE)
1

𝑛


𝑖=1

𝑛
|𝑦𝑖 − 𝑓(𝑥𝑖)|

|𝑦𝑖|

Requires non-zero target column 

values

68
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MAE (Mean Absolute Error) vs. RMSE (Root Mean Squared Error)

69

MAE RMSE

Easy to interpret – mean absolute error Cannot be directly interpreted as the average error

All errors are equally weighted Larger errors are weighted more

Generally smaller than RMSE Ideal when large deviations need to be avoided

MAE RMSE

Case 1 2.25 2.29

Case 2 3.25 3.64

Example:

Actual values = [2,4,5,8], 

Case 1: Predicted Values = [4, 6, 8, 10]

Case 2: Predicted Values = [4, 6, 8, 14]
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R-squared vs. RMSE

70

R-squared RMSE

Relative measure: 

Proportion of variability explained by the model

Absolute measure: 

How much deviation at each point

Range: Usually between 0 and 1.

0 = no variability explained 

1 = all variability explained

Same scale as the target

R-sq RMSE

Case 1 0.96 1.12

Case 2 0.65 1.32

Example:

Actual values = [2,4,5,8], 

Case 1: Predicted Values = [3, 4, 5, 6]

Case 2: Predicted Values = [3, 3, 7, 7]



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Numeric Scorer

▪ Similar to scorer node, but for nodes with numeric predictions 

▪ Compare dependent variable values to predicted values to evaluate model 

quality. 

▪ Report R2, RMSE, MAPE, etc. 

71
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Exercises

▪ Regression Exercises:
▪ Goal: Predicting the house price

▪ 01_Linear_Regression_exercise

72



Regression Tree

73
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Regression Tree: Goal

74

We want to model the target 

variable with piecewise lines

→ No knowledge of functional 

form required

y

x
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Regression Tree: Initial Split

75

𝑐𝑚 =
1

𝑛
𝑦𝑖

Local mean:

s

For observations in 

segment m

Sum of squared errors:

𝐸𝑚 = 𝑦𝑖 − 𝑐𝑚
2

For all segments m

Optimal boundary S should minimize 

the total squared sum:

𝐸𝑚

y

x
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Regression Tree: Initial Split

76

s

𝑥 ≤ 93.5?

𝐶1 = 28.9 𝐶2 = 17.8

Y N

y

x
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Regression Tree: Growing the Tree

77

s

𝑥 ≤ 93.5?

𝑥 ≤ 70.5? 𝐶3 = 17.8

Y N

𝐶1 = 33.9 𝐶2 = 26.4

Y N

Repeat the 

splitting process 

within each 

segment

y

x
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Regression Tree: Final Model
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Regression Tree: Algorithm

Start with a single node containing all points. 

1. Calculate ci and Ei.

2. If all points have the same value for feature xj, stop. 

3. Otherwise, find the best binary splits that reduces Ej,s as much as possible. 
▪ Ej,s doesn’t reduce as much → stop

▪ A node contains less than the minimum node size → stop

▪ Otherwise, take that split, creating two new nodes.

▪ In each new node, go back to step 1.

79
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Regression Trees: Summary

▪ Differences to decision trees:  
▪ Splitting criterion: minimizing intra-subset variation (error)  

▪ Pruning criterion: based on numeric error measure  

▪ Leaf node predicts average target values of training instances reaching that node    

▪ Can approximate piecewise constant functions  

▪ Easy to interpret 

80
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Regression Trees: Pros & Cons

▪ Finding of (local) regression values (average)

▪ Problems:
▪ No interpolation across borders

▪ Heuristic algorithm: unstable and not optimal.

▪ Extensions:
▪ Fuzzy trees (better interpolation)

▪ Local models for each leaf (linear, quadratic)

81



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Exercises

▪ Regression Exercises:
▪ Goal: Predicting the house price

▪ 02_Regression_Tree_exercise

82



Ensemble Models
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Tree Ensemble Models

▪ General idea: take advantage of the 

“wisdom of the crowd”

▪ Ensemble models: Combining predictions 

from many predictors, e.g. decision trees

▪ Leads to a more accurate and robust model

▪ Model is difficult to interpret
▪ There are multiple trees in the model

84

Typically for classification, the 

individual models vote and the 

majority wins; for regression, 

the individual predictions are 

averaged

X

…
1

5 2

2 9 6 7

4

2 7

6 8 9 3

1

7 6

3 9 5 7

y

P1 P2 Pn…
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Bagging - Idea

▪ One option is ”bagging” (Bootstrap AGGregatING)

▪ For each tree / model a training set is generated by sampling uniformly with 

replacement from the standard training set

85

…

1

5 2

2 9 6 7

4

5 7

2 8 9 3

1

7 6

3 9 5 7

…

Build tree Build treeBuild tree
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Example for Bagging

86

Full training set 

Sampled datasetRowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

Row_6 2 6 Class 1

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

Row_5 8 1 Class 2

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

Row_5 8 1 Class 2

Row_6 2 6 Class 1

Sampled training set 

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_3 9 3 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

Row_3 9 3 Class 2

Row_5 8 1 Class 2

Row_6 2 6 Class 1

Row_1 2 6 Class 1

RowID 𝒙𝟏 𝒙𝟐 𝒚

Row_1 2 6 Class 1

Row_2 4 1 Class 2

Row_3 9 3 Class 2

Row_4 2 7 Class 1

Row_5 8 1 Class 2

Row_6 2 6 Class 1

Row_7 5 2 Class 2
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An Extra Benefit of Bagging: Out of Bag Estimation

▪ Able to evaluate the model using the training data

▪ Apply trees to samples that haven’t been used for training

87

X2

…
1

5 2

2 9 6 7

4

2 7

6 8 9 3

1

7 6

3 9 5 7

y2
OOB

P1 P2 Pn…

X1

…
1

5 2

2 9 6 7

4

2 7

6 8 9 3

1

7 6

3 9 5 7

P1 P2 Pn…

y1
OOB
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Random Forest

▪ Bag of decision trees, with an extra element of 

randomization 

▪ Each node in the decision tree only “sees” a subset of 

the input features, typically 𝑁 to pick from

▪ Random forests tend to be very robust w.r.t. overfitting

88

1

5 2

2 9 6 7

Build tree
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Boosting - Idea

▪ Starts with a single tree built from the data

▪ Fits a tree to residual errors from the previous model to refine the model 

sequentially

89

…

1

5 2

2 9 6 7

4

5 7

2 8 9 3

1

7 6

3 9 5 7

…

Build tree Build treeBuild tree

Residual 

errors 
from previous 

model

Residual 

errors 
from previous 

model
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Boosting - Idea

▪ Gradient boosting method 

▪ A shallow tree (depth 4 or less) is built at each step
▪ To fit residual errors from the previous step

▪ Resulting in a tree ℎ𝑚(𝑥)

▪ The resulting tree is added to the latest model to update
𝐹𝑚 𝑥 = 𝐹𝑚−1 𝑥 + 𝛾𝑚ℎ𝑚(𝑥)

▪ Where 𝐹𝑚−1(𝑥) is the model from the previous step

▪ The weight 𝛾𝑚 is chosen to minimize the loss function

▪ Loss function: quantifies the difference between model predictions and data

90
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Gradient Boosting Example – Regression

91

Regression tree 

with depth 1
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Gradient Boosted Trees

▪ Can be used for classification and regression

▪ Large number of iterations – prone to overfitting
▪ ~100 iterations are sufficient

▪ Can introduce randomness in choice of data subsets (“stochastic gradient 

boosting”) and choice of input features

92
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Ensemble Tree Nodes in KNIME Analytics Platform

Classification Problems

93

Regression Problems
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Parameter Optimization

94
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Exercises

▪ Classification Exercises:
▪ Goal: Predicting the house condition (high /low)

▪ 03_Random_Forest_exercise (with optional exercise to build a 

parameter optimization loop)

95



Logistic Regression



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

What is a Logistic Regression (algorithm)? 

▪ Another algorithm to train a classification model

97

I know already the 

decision tree algorithm 

and tree ensembles. 

Why do I need another 

one?
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Why Shouldn’t we Always use the Decision Tree?

98

?
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Decision Boundary of a Logistic Regression

99

?



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Linear Regression vs. Logistic Regression

100

Linear Regression Logistic Regression

Target variable y Numeric 𝑦 ∈ (−∞,∞)/[𝑎, 𝑏] Nominal 𝑦 ∈ 0, 1, 2, 3 /{𝑟𝑒𝑑, 𝑤ℎ𝑖𝑡𝑒}

Functional relationship 

between features 

and…

… target value 𝑦

𝑦 = 𝑓(𝑥1, … , 𝑥𝑛, 𝛽0, … , 𝛽𝑛)
𝑦 = 𝛽0+𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛

… class probability P (y = class i)

𝑃 𝑦 = 𝑐𝑖 = 𝑓 𝑥1, … , 𝑥𝑛, 𝛽0, … , 𝛽𝑛

Goal: Find the regression coefficients 𝛽0, … , 𝛽𝑛
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Let’s find out how Binary Logistic Regression works!

▪ Idea: Train a function, which gives us the probability for each class (0 and 1) 

based on the input features 

▪ Recap on probabilities
▪ Probabilities are always between 0 and 1

▪ The probability of all classes sum up to 1

𝑃 𝑦 = 1 = 𝑝1 => 𝑃 𝑦 = 0 = 1 − 𝑝1

➔ It’s sufficient to model the probability for one class

101
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Let’s Find Out How Binary Logistic Regression Works!

102

𝑃 𝑦 = 1 = 𝑓 𝑥1, 𝑥2; 𝛽0, 𝛽1, 𝛽2 ≔
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2)

Feature space Probability function given 𝑥1 = 2



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

More General: Binary Logistic Regression

▪ Model:

𝜋 = 𝑃(𝑦 = 1) =
1

1+exp(−𝑧)

With 𝑧 = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑛𝑥𝑛 = 𝑿𝜷. 

▪ Goal: Find the regression coefficients𝜷 = (𝛽0, … , 𝛽𝑛)

▪ Notation:
▪ 𝑦𝑖 is the class value for sample i

▪ 𝑥1, … , 𝑥𝑛 is the set of input features, 𝑿 = (1, 𝑥1, … , 𝑥𝑛)

▪ The training data set has m observations (𝑦𝑖 , 𝑥1
𝑖 , … , 𝑥𝑛

𝑖 )

103
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How can we Find the Best Coefficients β?

Maximize the product of the probabilities ➔ Likelihood function 

Why does it make sense to maximize this function?

104

𝑃 𝑦 = 𝑦𝑖 = ൝
𝜋𝑖

1 − 𝜋𝑖

𝑖𝑓 𝑦𝑖 = 1

𝑖𝑓 𝑦𝑖 = 0

= 𝜋𝑖
𝑦𝑖 1 − 𝜋𝑖

1−𝑦𝑖

𝐿 𝛽; 𝑦, 𝑋 =ෑ
𝑖=1

𝑚

𝑃(𝑦 = 𝑦𝑖) =ෑ
𝑖=1

𝑚

𝜋𝑖
𝑦𝑖 1 − 𝜋𝑖

1−𝑦𝑖

Remember:

𝜋𝑖 = P 𝑦 = 1
𝑢0 = 1 for 𝑢 ∈ ℝ
𝑢1 = 𝑢 for 𝑢 ∈ ℝ
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Max Likelihood and Log Likelihood Functions

▪ Maximize the Likelihood function 𝐿 𝜷; 𝒚, 𝑿

max
𝛽

𝐿 𝛽; 𝑦, 𝑋 =max
𝛽

ෑ
𝑖=1

𝑚

𝜋𝑖
𝑦𝑖 1 − 𝜋𝑖

1−𝑦𝑖

▪ Equivalent to maximizing the Log Likelihood function 𝐿𝐿 𝜷; 𝒚, 𝑿

max
𝛽

𝐿𝐿(𝜷; 𝒚, 𝑿) = max
𝛽


𝑖=1

𝑛

𝑦𝑖 ln 𝜋𝑖 + 1 − 𝑦𝑖 ln 1 − 𝜋𝑖
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How can we find this Coefficients?

▪ To find the coefficients of our model we want to find 𝜷 so that the value of the 

function 𝐿𝐿 𝜷; 𝒚, 𝑿 is maximal

▪ KNIME Analytics Platform provides two algorithms
▪ Iteratively re-weighted least squares

▪ Uses the idea of the newton method

▪ Stochastic average gradient descent

106
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Idea: Gradient Descent Method

max𝐿𝐿(𝜷; 𝑿, 𝒚) ⟺ min−𝐿𝐿(𝜷;𝑿, 𝒚)

107

▪ Example: min −𝐿𝐿 𝛽 ≔ 𝑓(𝛽)

▪ Start from an arbitrary point

▪ Move towards the minimum

▪ With step size Δ𝑠

▪ If 𝑓(𝛽) is strictly convex 

➔ Only one global minimum exists

▪ Z normalization of the input data lead 

to better convergence

Δs

Optimal መ𝛽
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Learning Rate / Step Length Δ𝑠

108

Δ𝑠 too small Δ𝑠 too large Just right

Δ𝑠

Δ𝑠



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Learning Rate Δ𝑠

▪ Fixed: 

Δ𝑠𝑘 = Δ𝑠0

▪ Annealing:

Δ𝑠𝑘 =
Δ𝑠0

1 +
𝛼
𝑘

with iteration number 𝑘 and decay rate 𝛼

▪ Line Search: Learning rate strategy that tries to find the optimal learning rate

109
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Is there a way to handle Overfitting as well? (optional)

▪ To avoid overfitting: add regularization by penalizing large weights

▪ 𝐿2 regularizations = Coefficients are Gauss distributed with 𝜎 =
1

𝜆

𝑙 መ𝛽; 𝑦, 𝑋 ≔ −𝐿𝐿 መ𝛽; 𝑦, 𝑋 +
𝜆

2
|| መ𝛽||2

2

▪ 𝐿1 regularizations = Coefficients are Laplace distributed with 𝜎 =
2

𝜆

𝑙 መ𝛽; 𝑦, 𝑋 ≔ −𝐿𝐿 መ𝛽; 𝑦, 𝑋 + 𝜆|| መ𝛽||1

=> The smaller 𝜎, the smaller the coefficients መ𝛽

110
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Impact of Regularization

111
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Interpretation of the Coefficients

▪ Interpretation of the sign
▪ 𝛽𝑖 > 0 : Bigger 𝑥𝑖 lead to higher probability

▪ 𝛽𝑖 < 0 : Bigger 𝑥𝑖 lead to smaller probability

112
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Interpretation of the p Value

▪ p- value < 𝛼: input feature has a significant impact on the dependent variable.
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Summary Logistic Regression

▪ Logistic regression is used for classification problems

▪ The regression coefficients are calculated by maximizing the likelihood function, 

which has no closed form solution, hence iterative methods are used.

▪ Regularization can be used to avoid overfitting.

▪ The p-value shows us whether an independent variable is significant

114
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Exercises

▪ Classification Exercises:
▪ Goal: Predicting the house condition (high /low)

▪ 04_Logistic_Regression_exercise

115
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Recommendation Engines and Market Basket Analysis

117

Recommendation

IF 

From the analysis of many 

shopping baskets ...

THEN

+

A-priori algorithm
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A-priori Algorithm: the Association Rule

118

IF THEN+

Antecedent Consequent
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Building the Association Rule

N shopping baskets

119

Search for 

frequent itemsets

{A, B, F, H}

{A, B, C}

{B, C, H}

{D, E , F} 

{D, E}

{A, B}

{A, C}

{H, F}

…



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

From “Frequent Itemsets“ to “Rules“

120

{A, B, F, H}

{A, B, F}      ➔ H

{A, B, H}      ➔ F

{A, F, H}      ➔ B

{B, F, H}      ➔ A
Which rules shall I choose?
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Support, Confidence, and Lift

▪ Item set support 𝒔 =
𝑓𝑟𝑒𝑞(𝐴,𝐵,𝐹,𝐻)

𝑁

▪ Rule confidence 𝒄 =
𝑓𝑟𝑒𝑞(𝐴,𝐵,𝐹,𝐻)

𝑓𝑟𝑒𝑞(𝐴,𝐵,𝐹)

▪ Rule lift =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ( 𝐴,𝐵,𝐹 ⇒𝐻)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴,𝐵,𝐹 × 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐻)

The rules with support, confidence and lift above a threshold → most reliable ones

121

{A, B, F}    ➔ H
How often these items 

are found together

How often the antecedent 

is together with the consequent

How often antecedent and 

consequent happen together 

compared with random 

chance
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Association Rule Mining (ARM): Two Phases

Discover all frequent and strong association rules 

X  Y      → “if X then Y”

with sufficient support and confidence

Two phases:

1. find all frequent itemsets (FI)

▪ Select itemsets with a minimum support 

𝐹𝐼 = 𝑋, 𝑌 , 𝑋, 𝑌 ⊂ 𝐼|𝑠 𝑋, 𝑌 ≥ 𝑆𝑚𝑖𝑛

2. build strong association rules
▪ Select rules with a minimum confidence:

𝑅𝑢𝑙𝑒𝑠: 𝑋 ⇒ 𝑌, 𝑋, 𝑌 ⊂ 𝐹𝐼, ห𝑐 𝑋 ⇒ 𝑌 ≥ 𝐶𝑚𝑖𝑛

122

User parameters

 Most of the complexity
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A-Priori Algorithm: Example

▪ Let‘s consider milk, diaper, and beer: 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 ⇒ 𝑏𝑒𝑒𝑟

▪ How often are they found together across all shopping baskets?

▪ How often are they found together across all shopping baskets containing the 

antecedents?

123

TID Transactions

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

support

confidence

𝑠 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

=
𝑃 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝑇
=

2

5
= 0.4

𝑐 =
𝑃 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝑃 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟
=

2

3
= 0.67
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A-Priori Algorithm: Example

▪ Let‘s consider milk, diaper, and beer: 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 ⇒ 𝑏𝑒𝑒𝑟

▪ How often are they found together across all shooping baskets?

▪ How often are they found together across all shopping baskets containing the 

antecedents?

124

𝑠(𝑏𝑒𝑒𝑟) =
𝑃 𝑏𝑒𝑒𝑟

𝑇
=

3

5
= 0.6

𝑅𝑢𝑙𝑒 𝑙𝑖𝑓𝑡 =
𝑠 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟, 𝑏𝑒𝑒𝑟

𝑠 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟 × 𝑠(𝑏𝑒𝑒𝑟)

=
0.4

0.6 × 0.6
= 1.11

𝑠(𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟) =
𝑃 𝑚𝑖𝑙𝑘, 𝑑𝑖𝑎𝑝𝑒𝑟

𝑇
=

3

5
= 0.6

TID Transactions

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke
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Association Rule Mining: Is it Useful?

▪ David J. Hand (2004):

“Association Rule Mining is likely the field with the highest ratio of number of

published papers per reported application.”

▪ KNIME Blog post:

https://www.knime.com/knime-applications/market-basket-analysis-and-recommendation-engines

125

https://www.knime.com/knime-applications/market-basket-analysis-and-recommendation-engines
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Recommendation Engines or Market Basket Analysis

126

RecommendationFrom the analysis of the reactions

of many people to the same item ...

IF A has the same opinion as B on 

an item, 

THEN A is more likely to have B's 

opinion on another item than that of 

a randomly chosen person

Collaborative Filtering
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Collaborative Filtering (CF)

Collaborative filtering systems have many forms, but many common systems can 

be reduced to two steps: 

1. Look for users who share the same rating patterns with the active user (the 

user whom the recommendation is for)

2. Use the ratings from those like-minded users found in step 1 to calculate a 

prediction for the active user

3. Implemented in Spark

https://www.knime.com/blog/movie-recommendations-with-spark-collaborative-filtering

128

https://www.knime.com/blog/movie-recommendations-with-spark-collaborative-filtering
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Exercises:

▪ Market Basket Analysis
▪ 02_Build_Association_Rules_for_MarketBasketAnalysis_exercise

▪ 03_Apply_Association_Rules_for_MarketBasketAnalysis_exercise

130



Artificial Neurons and Networks
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Biological vs. Artificial

Biological Neuron

Artificial Neuron (Perceptron) 

132

Biological Neural Networks

Artificial Neural Networks 

(Multilayer Perceptron, MLP)

σ σf( )

𝑤2

𝑤1
𝑏

𝑦 = 𝑓(𝑥1𝑤1 + 𝑥2𝑤2 + 𝑏)

𝑦 = 𝑓(

𝑖=0

𝑛

𝑥𝑖𝑤𝑖)

𝑥1

𝑥2

y

𝑥1

𝑥2

𝑥3

𝑥4

y𝑏 = 𝑤0
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Architecture / Topology

133

Input 

Layer

Hidden 

Layer

Output 

Layer
Forward pass:

𝒐 = 𝑓 𝑊𝑥
2𝒙

𝑦 = 𝑓(𝑊𝑦
3𝒐)

σ 𝑓

σ 𝑓

σ 𝑓

σ 𝑓
𝑊2,1

2

𝑊3,1
2

𝑊1,2
2

𝑊2,2
2

𝑊3,2
2

𝑊1,1
3

𝑊1,2
3

𝑊1,3
3

𝑊1,1
2

𝑦

𝑥1

𝑥2

𝑜1
2

𝑜2
2

𝑜3
2
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Same with Matrix Notations

134

Input 

Layer

Hidden 

Layer

Output 

Layer Forward pass:

𝒐 = 𝑓 𝑊𝑥
2𝒙

𝑦 = 𝑓(𝑊𝑦
3𝒐)𝑥1

𝑥2

σ 𝑓

σ 𝑓

σ 𝑓

σ 𝑓

𝑾𝒙
𝟐 𝑾𝒚

𝟑

𝑦

f( ) = activation function

𝑜1
2

𝑜2
2

𝑜3
2
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Frequently used activation functions

135

Sigmoid Tanh Rectified Linear Unit (ReLU)

𝑓 𝑎 =
1

1 + 𝑒−ℎ𝑎 𝑓 𝑎 =
𝑒2ℎ𝑎 − 1

𝑒2ℎ𝑎 + 1
𝑓 𝑎 = 𝑚𝑎𝑥 0, ℎ𝑎
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Example: Passing the KNIME L1-Certification

136

Minutes attended

W
o
rk

fl
o
w

 b
u
ild

s

Passed certification

Didn’t pass certification
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Example: Passing the KNIME L1-Certification

137

Input features:

𝑥1= minutes attended

𝑥2= workflows build

Output:

ො𝑦 =Probability that a person passed

ො𝑦 ≥ 0.5 ⇒ 𝑃𝑎𝑠𝑠𝑒𝑑 and ො𝑦 < 0.5 ⇒ 𝐹𝑎𝑖𝑙𝑒𝑑

-1.41

-0.044

-0.566

ො𝑦

-1.298

-1.431
-0.513

2.275

1.0733

-0.608

Input 

Layer

Hidden 

Layer

Output 

Layer

𝑓1 = 𝑡𝑎𝑛ℎ 𝑓2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

σ 𝑓1

σ 𝑓1

σ 𝑓2

𝑥1

𝑥2
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Example: Passing the KNIME L1-Certification

138

Minutes attended

W
o
rk

fl
o
w

 b
u
ild

s

Passed certification

Didn’t pass certification

New sample

𝑥1= minutes attended = 170 

𝑥2= workflows build = 8
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Example: Passing the KNIME L1-Certification

139

-1.41

-0.044

-0.566

ො𝑦

Input features:

𝑥1= minutes attended

𝑥2= workflows build

Output:

ො𝑦 =Probability that a person passed

ො𝑦 ≥ 0.5 ⇒ 𝑃𝑎𝑠𝑠𝑒𝑑 and ො𝑦 < 0.5 ⇒ 𝐹𝑎𝑖𝑙𝑒𝑑

-1.298

-1.431
-0.513

2.275

1.0733

-0.608

Input 

Layer

Hidden 

Layer

Output 

Layer

𝑓1 = 𝑡𝑎𝑛ℎ 𝑓2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

σ 𝑓1-0.888

σ 𝑓1-0.983

σ 𝑓20.013 0.013

𝑥1

𝑥2

0.567

0.8

Normalize

Normalize

170

8

This prediction looks wrong. 

Why does the network 

predict this low probability?

The network has not been trained yet. The 

current weights are selected randomly.
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Training a Neural Network = Finding Good Weights

140

Input 

Layer

Hidden 

Layer

Output 

Layer

170

8

Predicted ො𝑦 = 0.013

True y = 1

ℒ (ො𝑦 𝑥1, 𝑥2,𝑊 , 𝑦)𝐽 𝑊 =

ො𝑦

σ 𝑓1

σ 𝑓1

σ 𝑓2

𝑥1

𝑥2

Binary cross entropy

ℒ = −(𝑦 log ො𝑦 + (1 − 𝑦) log(1 − ො𝑦))
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Learning Rule from Gradient Descent

▪ Adjust the weight for the next step by the 

adjustment term ∆𝒘(𝑡)

𝒘 𝑡 + 1 = 𝒘 𝑡 + 𝜂 ∆𝒘(𝑡)

141

∆𝒘(𝑡)

Optimal 

solution

L
o
s
s
 f

u
n
c
ti
o
n

Weight 𝒘

Weight in 

current step 𝑡
Weight adjustment 

based on gradient 

Updated weight in 

next step 𝑡 + 1
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Idea Behind Gradient Descent

142

𝐽(𝑤1, 𝑤2)

𝑤1

𝑤2

∇𝑊𝐽 𝑥,𝑊 =

𝜕𝐽

𝜕𝑤1

𝜕𝐽

𝜕𝑤2
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Backpropagation

▪ Efficient way to calculate the gradient during optimization

Forward pass

Backward pass

143

𝑥 𝑧 ො𝑦 𝐽( ො𝑦, 𝑦;𝑤1, 𝑤2)
𝑤1 𝑤2

𝑥 𝑧 ො𝑦 𝐽( ො𝑦, 𝑦;𝑤1, 𝑤2)
𝑤1 𝑤2

𝜕𝐽

𝜕𝑤2
=

𝜕𝐽

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑤2

𝜕𝐽

𝜕𝑤1
=
𝜕𝐽

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑧
∗
𝜕𝑧

𝜕𝑤1
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Example: Passing the KNIME L1 Certification

144

-2.603

-0.554

-0.106

ො𝑦

Input features:

𝑥1= minutes attended

𝑥2= workflows build

Output:

𝑦 = Probability that a person passed

𝑦 ≥ 0.5 ⇒ 𝑃𝑎𝑠𝑠𝑒𝑑 and 𝑦 < 0.5 ⇒ 𝐹𝑎𝑖𝑙𝑒𝑑

-1.554

0.146
1.309

0.931

-3.096

0.117

Input 

Layer

Hidden 

Layer

Output 

Layer

𝑓1 = 𝑡𝑎𝑛ℎ 𝑓2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

σ 𝑓10.396

σ 𝑓1-0.929

σ 𝑓20.967 0.967

𝑥1

𝑥2

0.567

0.8

Normalize

Normalize

170

8
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Loss Landscape of a Real Neural Network

▪ A good choice for the step size 𝜂, 

aka learning rate, is important

𝑊 ← 𝑊 − 𝜂 ∇𝑊 𝐽(𝑥,𝑊)

▪ Many different optimizers with 

adaptive learning rates are 

available
▪ Adam, Adadelta, Adagrad, ect

▪ Other important settings
▪ Batch size, aka number of samples for one 

update

▪ Number of epochs, aka how often each 

sample is used
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Source: https://www.cs.umd.edu/~tomg/projects/landscapes/
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Optimizers in Keras (optional)

146

Optimizer How it works Strengths Weaknesses When to use

SGD with 

momentum
Use the previous gradient to 

accelerate convergence

-Reduces oscillation 

near maxima
-Const learning rate

NAG (Nesterov

accelerated gradient)

Use the current gradient to predict 

gradient

-Increased 

responsiveness

-Additional 

hyperparameter
RNN

Adagrad
Updating by cumulating sum of sq 

gradients from past

-Different learning 

parameters for 

different features

-Computationally 

expensive

-Shrinking learning 

rate

Sparse data (e.g. 

text)

Adadelta
Modified Adagrad with decaying 

average of sq gradients from past

-Learning rate not 

dramatically shrinking 

like Adagrad

-Computationally 

expensive

Sparse data (e.g. 

text)

RMSProp
Modified Adagrad with sq gradients 

added very slowly

-Learning rate not 

dramatically shrinking 

like Adagrad

Adam (Adaptive 

Moment Estimation)

RMSProp plus decaying average of 

gradients from past
-Fast convergence

-Computationally 

expensive
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Which Activation Functions? Which Loss Functions?

▪ Depends on the problem you are working on
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Activation Functions

Loss Functions

Hidden 

Layers

Output 

Layer
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Classification

Binary classification (0 vs 1) ✓ ✓ ✓ ✓ ✓

Binary classification (-1 vs 1) ✓ ✓ ✓ ✓ ✓

Multi-class classification ✓ ✓ ✓ ✓ ✓

Regression

Regression ✓ ✓ ✓ Δ Δ ✓ Δ ✓

Regression (wide range) ✓ ✓ ✓ ✓ ✓

Regression (possible outliers) ✓ ✓ ✓ ✓ ✓

✓ Recommended

Δ Can be used
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Codeless Deep Learning with KNIME Analytics Platform

▪ Simple option for feed forward neural networks with activation function sigmoid
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Codeless Deep Learning with KNIME Analytics Platform 
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Exercise

▪ Neural Network
▪ Goal: Train an MLP to solve our 

classification problem (rank: high/low)

▪ 01_Simple_Neural_Network_exercise
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Deep Learning
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From Neural Network To Deep Learning

▪ Deep feed forward network

▪ Many additional layer types
▪ Convolutional Layers for Images

▪ Image classification, Image segmentation

▪ Recurrent Layers for sequential data (join our next webinar)

▪ Time series prediction, language models, neural machine translation

▪ New architectures
▪ GANs 

▪ Transformer networks
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Recurrent Neural Networks
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What are Recurrent Neural Networks?

▪ Recurrent Neural Network (RNN) are a family of neural networks used for 

processing of sequential data

▪ RNNs are used for all sorts of tasks:
▪ Language modeling / Text generation

▪ Text classification

▪ Neural machine translation

▪ Image captioning

▪ Speech to text

▪ Numerical time series data, e.g. sensor data
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Neural Network: Code-free

165



Convolutional Neural Networks 
(CNN)
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Convolutional Neural Network (CNN)

▪ A CNN is a neural network with at least one convolutional layer.

▪ CNNs are commonly used when data has spatial relationships, e.g. images

▪ CNN learns a hierarchy of features using multiple convolution layers that detect 

different features.
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Images from: http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf

http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf
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Convolutional Neural Networks (CNN)

▪ Instead of connecting every neuron to the 

new layer a sliding window is used, which 

applies a filter on different parts of the 

image

▪ Some convolutions may detect edges or 

corners, while others may detect cats, 

dogs, or street signs inside an image
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Image from: https://towardsdatascience.com/a-

comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Convolutional Neural Networks

169
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Building CNNs with KNIME

170



Unsupervised Learning: 
Clustering
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Goal of Clustering Analysis

Discover hidden structures in unlabeled data (unsupervised)

Clustering identifies a finite set of groups (clusters) 𝐶1, 𝐶2⋯ ,𝐶𝑘
in the dataset such that: 

▪ Objects within the same cluster 𝐶𝑖 shall be as similar as possible

▪ Objects of different clusters 𝐶𝑖, 𝐶𝑗 (𝑖 ≠ 𝑗) shall be as dissimilar as possible
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Clustering Applications

▪ Find “natural” clusters and desc
▪ Data understanding

▪ Find useful and suitable groups
▪ Data Class Identification  

▪ Find representatives for 

homogenous groups   
▪ Data Reduction  

▪ Find unusual data objects  
▪ Outlier Detection  

▪ Find random perturbations of the 

data   
▪ Noise Detection 

173

Methods

▪ K-means

▪ Hierarchical

▪ DBScan

Examples

▪ Customer segmentation

▪ Molecule search

▪ Anomaly detection
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Cluster Properties

▪ Clusters may have different sizes, shapes, densities 

▪ Clusters may form a hierarchy

▪ Clusters may be overlapping or disjoint
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Types of Clustering Approaches

175

Linkage Based
e.g. Hierarchical Clustering

Clustering by Partitioning
e.g. k-Means

Density based Clustering
e.g. DBSCAN
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Types of Clustering Approaches

▪ No clustering method works universally well

176



Clustering: Partitioning
k-Means
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Partitioning

Goal:

A (disjoint) partitioning into k clusters with minimal costs

▪ Local optimization method:

▪ choose k initial cluster representatives

▪ optimize these representatives iteratively

▪ assign each object to its most similar cluster representative

▪ Types of cluster representatives:

▪ Mean of a cluster (construction of central points)

▪ Median of a cluster (selection of representative points)

▪ Probability density function of a cluster (expectation maximization)
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k-Means-Algorithm

Given k, the k-Means algorithm is implemented in four steps:      

1. Randomly choose 𝑘 objects as the initial centroids

2. Assign each object to the cluster with the nearest centroid    

3. Re-compute the centroids as the centers of the newly formed clusters

4. Go back to Step 2, repeat until the updated centroids stop moving significantly 
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k-Means Algorithm

180
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Comments of the k-Means Method

▪ Advantages:  
▪ Relatively efficient   

▪ Simple implementation    

▪ Weaknesses:  
▪ Often terminates at a local optimum

▪ Applicable only when mean is defined (what about categorical data?) 

▪ Need to specify k, the number of clusters, in advance

▪ Unable to handle noisy data and outliers  

▪ Not suitable to discover clusters with non-convex shapes 
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Outliers: k-Means vs k-Medoids

Problem with K-Means

An object with an extremely large value can substantially distort the 

distribution of the data. 

One solution: K-Medoids

Instead of taking the mean value of the objects in a cluster as a reference 

point, medoids can be used, which are the most centrally located objects 

in a cluster. 
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Clustering: Distance Functions
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Influence of Distance Function / Similarity

▪ Clustering vehicles:
▪ red Ferrari

▪ green Porsche

▪ red Bobby car

▪ Distance Function based on maximum speed

(numeric distance function):
▪ Cluster 1: Ferrari & Porsche

▪ Cluster 2: Bobby car

▪ Distance Function based on color

(nominal attributes):
▪ Cluster 1: Ferrari and Bobby car

▪ Cluster 2: Porsche

184

The distance function 

affects the shape of the 

clusters
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Distance Functions for Numeric Attributes

For two objects 𝑥 = 𝑥1, 𝑥2, ⋯ , 𝑥𝑑 and 𝑦 = 𝑦1, 𝑦2, ⋯ , 𝑦𝑑 :

▪ Lp-Metric (Minkowski-Distance)

▪ Euclidean Distance (𝑝 = 2)

▪ Manhattan-Distance (𝑝 = 1)

▪ Maximum-Distance (𝑝 = ∞)
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𝑑𝑖𝑠𝑡(𝑥, 𝑦) =
𝑝



𝑖=1

𝑑

𝑥𝑖 − 𝑦𝑖
𝑝

𝑑𝑖𝑠𝑡(𝑥, 𝑦) = 

𝑖=1

𝑑

𝑥𝑖 − 𝑦𝑖
2

𝑑𝑖𝑠𝑡 𝑥, 𝑦 =

𝑖=1

𝑑

𝑥𝑖 − 𝑦𝑖

𝑑𝑖𝑠𝑡 𝑥, 𝑦 = max
1≤𝑖≤𝑑

𝑥𝑖 − 𝑦𝑖



Clustering: Quality Measures
Silhouette
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Optimal Clustering: Example

187
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Cluster Quality Measures

Centroid  𝜇𝐶: mean vector of all objects in clustering C

▪ Within-Cluster Variation:

𝑇𝐷2 = 

𝑖=1

𝑘



𝑝∈𝑪𝒊

𝑑𝑖𝑠𝑡(𝑝, 𝜇𝐶𝑖)
2

▪ Between-Cluster Variation:

𝐵𝐶2 =

𝑗=1

𝑘



𝑖=1

𝑘

𝑑𝑖𝑠𝑡(𝜇𝐶𝑗 , 𝜇𝐶𝑖)
2

▪ Clustering Quality (one possible measure):

𝐶𝑄 =
𝐵𝐶2

𝑇𝐷2
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Silhouette-Coefficient for object 𝑥

Silhouette-Coefficient [Kaufman & Rousseeuw 1990] measures the quality of 

clustering

▪ 𝑎(𝑥): distance of object 𝑥 to its cluster representative   

▪ 𝑏(𝑥): distance of object 𝑥 to the representative of the „second-best“ cluster  

▪ Silhouette 𝑠(𝑥) of 𝑥

𝑠 𝑥 =
𝑏 𝑥 − 𝑎(𝑥)

max{𝑎 𝑥 , 𝑏(𝑥)}
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Silhouette-Coefficient

190

Cluster 1

Cluster 2
𝑎(𝑥)

𝑏(𝑥)

𝑠(𝑥) =
𝑏(𝑥) − 𝑎(𝑥)

max{ 𝑎(𝑥), 𝑏(𝑥)}
≈
𝑏(𝑥)

𝑏(𝑥)
= 1

𝑎 𝑥 ≪ 𝑏(𝑥)

Good clustering…



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Silhouette-Coefficient

191

Cluster 1 Cluster 2

𝑎(𝑥)

𝑏(𝑥)

𝑠(𝑥) =
𝑏(𝑥) − 𝑎(𝑥)

max{ 𝑎(𝑥), 𝑏(𝑥)}
≈

0

𝑏(𝑥)
= 0

𝑎(𝑥) ≈ 𝑏(𝑥)

…not so good…
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Silhouette-Coefficient

192

Cluster 1

Cluster 2𝑎(𝑥)

𝑏(𝑥)

𝑠(𝑥) =
𝑏(𝑥) − 𝑎(𝑥)

max{ 𝑎(𝑥), 𝑏(𝑥)}
≈
−𝑎(𝑥)

𝑎(𝑥)
= −1

𝑎(𝑥) ≫ 𝑏(𝑥)

…bad clustering.
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Silhouette-Coefficient for Clustering C

▪ Silhouette coefficient 𝑠𝑐 for clustering 𝐶 is the average silhouette over all objects 

𝑥 ∈ 𝐶

𝑠𝑐 =
1

𝑛


𝑥∈𝐶

𝑠(𝑥)

▪ Interpretation of silhouette coefficient:      
▪ 𝑠𝑐 > 0.7 : strong cluster structure,    

▪ 𝑠𝑐 > 0.5 : reasonable cluster structure,    

▪ . . . 
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Silhouette Coefficient over a Range of k

▪ Silhouette Coefficient Node in KNIME Analytics Platform

▪ Loop over various values of k

▪ Optimized k-means component

▪ Loop over various values of k

194
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Silhouette Coefficient over k

195

Peak at k=6
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Summary: Clustering by Partitioning

▪ Scheme always similar:  
▪ Find (random) starting clusters  

▪ Iteratively update centroid positions 

(compute new mean, swap medoids, compute new distribution parameters,…)    

▪ Important:  
▪ Number of clusters k  

▪ Initial cluster position influences (heavily):  

▪ quality of results  

▪ speed of convergence    

▪ Problems for iterative clustering methods:  
▪ Clusters of varied size, density and shape 
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Clustering: Linkage
Hierarchical Clustering
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Linkage Hierarchies: Basics

Goal

▪ Construction of a hierarchy of clusters (dendrogram) 

by merging/separating clusters with minimum/maximum distance 

Dendrogram:

▪ A tree representing hierarchy of clusters, 

with the following properties:
▪ Root: single cluster with the whole data set.

▪ Leaves: clusters containing a single object.

▪ Branches: merges / separations between larger 

clusters and smaller clusters / objects

198
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Base Algorithm

1. Form initial clusters consisting of a single object, and compute  the distance 

between each pair of clusters.    

2. Merge the two clusters having minimum distance.     

3. Calculate the distance between the new cluster and all other clusters.   

4. If there is only one cluster containing all objects:      

Stop, otherwise go to step 2. 
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Single Linkage

▪ Distance between clusters (nodes):

Distance of the closest two points, one from each cluster

▪ Merge Step: Union of two subsets of data points

202

𝐷𝑖𝑠𝑡(𝐶1, 𝐶2) = min
𝑝∈𝐶1,𝑞∈𝐶2

{𝑑𝑖𝑠𝑡(𝑝, 𝑞)}

Ci

Cj
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Complete Linkage

▪ Distance between clusters (nodes):

Distance of the farthest two points, one from each cluster

▪ Merge Step: Union of two subsets of data points

203

𝐷𝑖𝑠𝑡(𝐶1, 𝐶2) = m𝑎𝑥
𝑝∈𝐶1,𝑞∈𝐶2

{𝑑𝑖𝑠𝑡(𝑝, 𝑞)}

Ci

Cj
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Average Linkage / Centroid Method

▪ Distance between clusters (nodes):

▪ Merge Step: 
▪ union of two subsets of data points

▪ construct the mean point of the two clusters
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𝐷𝑖𝑠𝑡𝑚𝑒𝑎𝑛 𝐶1, 𝐶2 = 𝑑𝑖𝑠𝑡 𝑚𝑒𝑎𝑛 𝐶1 , 𝑚𝑒𝑎𝑛 𝐶2

𝐷𝑖𝑠𝑡𝑎𝑣𝑔(𝐶1, 𝐶2) =
1

𝐶1 ⋅ 𝐶2


𝑝∈𝐶1



𝑝∈𝐶2

𝑑𝑖𝑠𝑡(𝑝, 𝑞)

Average distance of all possible pairs of points between 𝐶1 and 𝐶2

Distance between two centroids
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Comments on Single Linkage and Variants

+ Finds not only a „flat“ clustering, but a hierarchy of clusters

(dendrogram)

+ A single clustering can be obtained from the dendrogram 

(e.g., by performing a horizontal cut)

- Decisions (merges/splits) cannot be undone

- Sensitive to noise (Single-Link)

(a „line“ of objects can connect two clusters)

- Inefficient

→ Runtime complexity at least O(n2)  for n objects
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Linkage Based Clustering

▪ Single Linkage:
▪ Prefers well-separated clusters

▪ Complete Linkage:
▪ Prefers small, compact clusters

▪ Average Linkage:
▪ Prefers small, well-separated clusters…
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Clustering: Density
DBSCAN
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Clustering: DBSCAN

DBSCAN - a density-based clustering algorithm - defines five types of points in a 

dataset. 

▪ Core Points are points that have at least a minimum number of neighbors 

(MinPts) within a specified distance (𝜀). 

▪ Noise Points are neither core points nor border points.

▪ Border Points are points that are within 𝜀 of a core point, but have less than 

MinPts neighbors.

▪ Directly Density Reachable Points are within 𝜀 of a core point. 

▪ Density Reachable Points are reachable with a chain of Directly Density 

Reachable points.

Clusters are built by joining core and density-reachable points to one another.
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Example with MinPts = 3

Note: But t is not density reachable from s, because s is not a Core point

209

Core Point 

vs. Border Point 

vs. Noise 

Directly Density Reachable 

vs. Density Reachable

t

s n
▪ t = Core point 

▪ s = Boarder point 

▪ n = Noise point

▪ z is directly density 

reachable from t

▪ s is not directly density 

reachable from t, but 

density reachable via z

t

s

z
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DBSCAN [Density Based Spatial Clustering of Applications with Noise]

▪ For each point, DBSCAN determines the e-environment and checks whether it 

contains more than MinPts data points ➔ core point

▪ Iteratively increases the cluster by adding density-reachable points 

210



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

DBSCAN [Density Based Spatial Clustering of Applications with Noise]

▪ For each point, DBSCAN determines the e-environment and checks whether it 

contains more than MinPts data points ➔ core point

▪ Iteratively increases the cluster by adding density-reachable points 
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Summary: DBSCAN

Clustering:

▪ A density-based clustering 𝐶 of a dataset D w.r.t. 𝜀 and MinPts is the set of all 

density-based clusters 𝐶𝑖 w.r.t. 𝜀 and MinPts in D.

▪ The set 𝑁𝑜𝑖𝑠𝑒𝐶𝐿 („noise“) is defined as the set of all objects in D which do not 
belong to any of the clusters.

Property:

▪ Let 𝐶𝑖 be a density-based cluster and 𝑝𝐶𝑖 be a core object.

212

𝐶𝑖 = 𝑜𝐷 𝑜 density-reachable from 𝑝 w.r.t. 𝜀 and MinPts}.
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DBSCAN [Density Based Spatial Clustering of Applications with Noise]

▪ DBSCAN uses (spatial) index structures for determining the e-environment: 

→ computational complexity 𝑂(𝑛 log 𝑛) instead of 𝑂(𝑛2)

▪ Arbitrary shape clusters found by DBSCAN

▪ Parameters: 𝜀 and 𝑀𝑖𝑛𝑃𝑡𝑠
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Exercises

▪ Clustering
▪ Goal: Cluster location data from California

▪ 01_Clustering_exercise
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ML model

Inside its own 

application

Deploying the ML model 
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Building a web service

217

KNIME Server External 

Application

REST Service

KNIME 

Server

Upload

REST Service

1

2
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Classification using KNIME Analytics Platform

218

▪ The machine learning Classification task (pipeline) is broken into 4 pieces
▪ Reading and Blending

▪ Pre-processing

▪ Train, Optimize and score

▪ Deploy
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Deployment (Manual) 

219

▪ The Deployment workflow must be able to take input data from external sources 

and generate predictions using the trained model
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Call Workflow (Table Based)

▪ Calls and executes another 

workflow

▪ Use the KNIME Server 

Connection node if the other 

workflow is located on KNIME 

Server 

220

KNIME Server 

Connection

Optional data

input port
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Concept of integrated deployment

▪ Use your design workflow to 

automate creation of your 

production workflow

▪ Lets you capture the parts of your 

workflow that are needed in a 

production environment, like:
▪ Custom data preprocessing

▪ Model application for prediction

▪ Anything else you might need, so that you 

can…

▪ Automatic deployment to KNIME 

Business Hub
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Integrated Deployment

222

▪ Closing the gap between Data Science Creation and Production

Benefits
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Classification using KNIME Analytics Platform

223

▪ The machine learning Classification task (pipeline) is broken into 4 pieces
▪ Reading and Blending

▪ Pre-processing

▪ Train, Optimize and score

▪ Deploy
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Integrated Deployment in KNIME 

224

▪ The training worklfow automatically writes the deployment workflow, so any 

changes done to the training workflow will be simultensouly pushed to 

deployment workflow
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Example: Workflow in Production

▪ Captured workflow parts are combined

▪ Automatically added nodes:
▪ Container Input (Table) node: This node receives 

a KNIME table from an external caller (i.e. 

the Call Workflow (Table Based) node) and 

makes it available at the output port.

▪ Container Output (Table) node: This node sends 

a KNIME table to an external caller (i.e. the Call 

Workflow (Table Based) node)
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Capture Workflow Start/End

▪ Define the start and end point of the workflow you want to capture

▪ Select the input and output ports
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Workflow Combiner

▪ If you are capturing more than one part of 

your workflow

▪ Connect first workflow part to upper input 

port

▪ Connect second workflow part to lower 

input port

▪ Add further input ports to combine more 

workflow parts
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Workflow Writer

▪ Write captured workflow to selected output location

228



Data Preparation



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Motivation

▪ Real world data is “dirty“

→ Contains missing values, noises, outliers, inconsistencies

▪ Comes from different information sources

→ Different attribute names, values expressed differently, related tuples

▪ Different value ranges and hierarchies

→ One attribute range may overpower another

▪ Huge amount of data

→ Makes analyis difficult and time consuming
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Data Preparation

▪ Data Cleaning & Standardization (domain dependent)

▪ Aggregations (often domain dependent)

▪ Normalization

▪ Dimensionality Reduction

▪ Outlier Detection

▪ Missing Value Imputation

▪ Feature Selection

▪ Feature Engineering

▪ Sampling

▪ Integration of multiple Data Sources
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Data Preparation: Normalization
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Normalization: Motivation

Example: 

▪ Lengths in cm (100 – 200) and weights in kilogram (30 – 150) fall both in 

approximately the same scale

▪ What about lengths in m (1-2) and weights also in gram (30000 – 150000)?

→ The weight values in mg dominate over the length values for the similarity of 

records!

Goal of normalization:

▪ Transformation of attributes to make record ranges comparable
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Normalization: Techniques

▪ min-max normalization

▪ z-score normalization

▪ normalization by decimal scaling

234

𝑦 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑖𝑛

𝑦 =
𝑥 − 𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑𝑑𝑒𝑣(𝑥)

𝑦 =
𝑥

10𝑗
where j is the smallest integer for max(𝑦) < 1

PMMLHere [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] is [−1,1]



Data Preparation: Missing Value 
Imputation
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Missing Value Imputation: Motivation

Data is not always available

▪ E.g., many tuples have no recorded value for several attributes, such as weight 

in a people database

Missing data may be due to 

▪ Equipment malfunctioning

▪ Inconsistency with other recorded data and thus deleted

▪ Data not entered (manually)

▪ Data not considered important at the time of collection

▪ Data format / contents of database changes
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Missing Values: Types (optional)

Types of missing values:

Example: Suppose you are modeling weight Y as a function of sex X 

▪ Missing Completely At Random (MCAR): reason does not depend on its value 

or lack of value. 
There may be no particular reason why some people told you their weights and others 

didn’t.

▪ Missing At Random (MAR): the probability that Y is missing depends only on 

the value of X.
One sex X may be less likely to disclose its weight Y. 

▪ Not Missing At Random (NMAR): the probability that Y is missing depends on 

the unobserved value of Y itself.
Heavy (or light) people may be less likely to disclose their weight.
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Missing Values Imputation

How to handle missing values?

▪ Ignore the record

▪ Remove the record

▪ Fill in missing value as:

▪ Fixed value: e.g., “unknown”, -9999, etc.

▪ Attribute mean / median / max. / min.

▪ Attribute most frequent value

▪ Next / previous /avg interpolation / moving avg value (in time series)

▪ A predicted value based on the other attributes (inference-based such as Bayesian, Decision Tree, 

...)
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Outlier Detection
(Optional)
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Outlier Detection

▪ An outlier could be, for example, rare behavior, system defect, measurement 

error, or reaction to an unexpected event

241



© 2023 KNIME AG. All rights reserved.© 2023 KNIME AG. All rights reserved.

Outlier Detection: Motivation

▪ Why finding outliers is important?
▪ Summarize data by statistics that represent the majority of the data

▪ Train a model that generalizes to new data

▪ Finding the outliers can also be the focus of the analysis and not only data cleaning
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Outlier Detection Techniques

▪ Knowledge-based

▪ Statistics-based
▪ Distance from the median 

▪ Position in the distribution tails 

▪ Distance to the closest cluster center

▪ Error produced by an autoencoder

▪ Number of random splits to isolate a data point 

from other data
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Material

https://www.knime.com/blog/four-techniques-for-outlier-detection
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Data Preparation: 
Dimensionality Reduction
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Is there such a thing as “too much data”?

“Too much data”:

▪ Consumes storage space

▪ Eats up processing time

▪ Is difficult to visualize

▪ Inhibits ML algorithm performance

▪ Beware of the model: Garbage in → Garbage out
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Dimensionality Reduction Techniques

▪ Measure based
▪ Ratio of missing values

▪ Low variance

▪ High Correlation

▪ Transformation based
▪ Principal Component Analysis (PCA)

▪ Linear Discriminant Analysis (LDA)

▪ t-SNE

▪ Machine Learning based
▪ Random Forest of shallow trees

▪ Neural auto-encoder
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Missing Values Ratio

IF (% missing value > threshold  )      THEN remove column
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Low Variance

▪ If column has constant value (variance = 0), it contains no useful information

▪ In general: IF (variance < threshold )    THEN remove column

249

Note: requires min-

max-normalization, 

and only works for 

numeric columns
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High Correlation

▪ Two highly correlated input variables probably carry similar information

▪ IF ( corr(var1, var2) >  threshold  ) => remove var1
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Principal Component Analysis (PCA) (optional)

▪ PCA is a statistical procedure that orthogonally transforms the 
original n coordinates of a data set into a new set of n coordinates, 
called principal components.

𝑃𝐶1, 𝑃𝐶2,⋯𝑃𝐶𝑛 = 𝑃𝐶𝐴 𝑋1, 𝑋2, ⋯𝑋𝑛

▪ The first principal component 𝑃𝐶1 follows the direction (eigenvector) 
of the largest possible variance (largest eigenvalue of the 
covariance matrix) in the data.

▪ Each succeeding component 𝑃𝐶𝑘 follows the direction of the next 
largest possible variance under the constraint that it is orthogonal 
to (i.e., uncorrelated with) the preceding components 
𝑃𝐶1, 𝑃𝐶2,⋯𝑃𝐶𝑘−1 .

If you’re still curious, there’s LOTS of different ways to think about PCA: 
https://stats.stackexchange.com/questions/2691/making-sense-of-
principal-component-analysis-eigenvectors-eigenvalues
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x1

x2

PC1

PC2

Image from Wikipedia

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues
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Principal Component Analysis (PCA)

▪ 𝑃𝐶1 describes most of the variability in the data, 𝑃𝐶2 adds the next big 

contribution, and so on. In the end, the last PCs do not bring much more 

information to describe the data.

▪ Thus, to describe the data we could use only the top 𝑚 < 𝑛 (i.e., 

𝑃𝐶1, 𝑃𝐶2, ⋯𝑃𝐶𝑚) components with little - if any - loss of information

▪ Caveats:
▪ Results of PCA are quite difficult to interpret

▪ Normalization required

▪ Only effective on numeric columns
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Dimensionality Reduction
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Ensembles of Shallow Decision Trees

▪ Often used for classification, but can be used for 

feature selection too

▪ Generate a large number (we used 2000) of trees 

that are very shallow (2 levels, 3 sampled features)

▪ Calculate the statistics of candidates and selected 

features. The more often a feature is selected in 

such trees, the more likely it contains predictive 

information.

▪ Compare the same statistics with a forest of trees 

trained on a random dataset.
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Data Preparation: 
Feature Selection
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Feature Selection vs. Dimensionality Reduction

▪ Both methods are used for reducing the number of features in a dataset. 

However:

▪ Feature selection is simply selecting and excluding given features without 

changing them.

▪ Dimensionality reduction might transform the features into a lower dimension.

▪ Feature selection is often a somewhat more aggressive and more 

computationally expensive process.
▪ Backward Feature Elimination

▪ Forward Feature Construction
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Backward Feature Elimination (greedy top-down)

1. First train one model on n input features

2. Then train n separate models each on 𝑛 − 1 input features and remove the 

feature whose removal produced the least disturbance

3. Then train 𝑛 − 1 separate models each on 𝑛 − 2 input features and remove 

the feature whose removal produced the least disturbance

4. And so on. Continue until desired maximum error rate on training data is 

reached. 
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Backward Feature Elimination

260
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Forward Feature Construction (greedy bottom-up)

1. First, train n separate models on one single input feature and keep the feature 

that produces the best accuracy. 

2. Then, train 𝑛 − 1 separate models on 2 input features, the selected one and 

one more. At the end keep the additional feature that produces the best 

accuracy.

3. And so on … Continue until an acceptable error rate is reached.
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Material

https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/
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Data Preparation: 
Feature Engineering
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Feature Engineering: Motivation

Sometimes transforming the original data allows for better discrimination 

by ML algorithms.
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Feature Engineering: Techniques

▪ Coordinate Transformations 
Remember PCA and LDA?

Polar coordinates , …

▪ Distances to cluster centres, after data clustering

▪ Simple math transformations on single columns 
(𝑒𝑥, 𝑥2, 𝑥3, tanh(𝑥), log(𝑥) , …)

▪ Combining together multiple columns in math functions 
(𝑓(𝑥1, 𝑥2, … 𝑥𝑛), 𝑥2 – 𝑥1, …)

▪ The whole process is domain dependent
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Exercises (optional)

▪ Clustering
▪ Goal: Cluster location data from California

▪ 01_Clustering_exercise

▪ Data Preparation
▪ 02_Missing_Value_Handling_exercise

▪ 03_Outlier_Detection_exercise

▪ 04_Dimensionality_Reduction_exercise

▪ 05_Feature_Selection_exercise
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Machine Learning Cheat Sheet

https://www.knime.com/sites/default/files/2021-07/CheatSheet_ML_A3.pdf
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Confirmation of Attendance and Survey

▪ If you would like to get a “Confirmation of 

Attendance” please click on the link below* 

Confirmation of Attendance and Survey

▪ The link also takes you to our course 

feedback survey. Filling it in is optional but 

highly appreciated!

Thank you!

*Please send your request within the next 3 days

275

https://docs.google.com/forms/d/e/1FAIpQLSdSzRNTPeLNe0iYRr1pAX9txgmeYt3BIKVX9bMyHBJTvT-ufw/viewform


Thank You!
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