

[L4-ML] Introduction to Machine Learning Algorithms

KNIME AG

Material

- Berthold, Borgelt, Höppner, Klawonn, Silipo: Guide to Intelligent Data Science, 2nd Edition Springer, 2020.
- Tom Mitchell: Machine Learning McGraw Hill, 1997.
- David Hand, Heikki Mannila, Padhraic Smyth: Principles of Data Mining MIT Press, 2001.
- Michael Berthold, David Hand (eds): Intelligent Data Analysis, An Introduction Springer Verlag, 2003.

[Wikipedia quoting Dhar 13, Leek 13]

Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms and systems to **extract knowledge and insights** from structured and unstructured data.

[Fayyad, Piatetsky-Shapiro & Smyth 96]

Knowledge discovery in databases (KDD) is the process of (semi-)automatic **extraction of knowledge** from databases which is *valid*, *previously unknown*, and *potentially useful*.

3

Some Clarity about Words

- *(semi)-automatic*: no manual analysis, though some user interaction required
- valid: in the statistical sense
- previously unknown: not explicit, no "common sense knowledge"
- potentially useful: for a given application
- structured data: numbers
- unstructured data: everything else (images, texts, networks, chem. compounds, ...)

Use Case Collection

Exercise: Let's Collect some Use Cases

Churn Prediction

CRM System Data about your customer

- Demographics
- Behavior
- Revenues

Model

- Churn Prediction
- Upselling Likelihood
- Product Propensity /NBO
- Campaign Management
- Customer Segmentation

• ...

Customer Segmentation

CRM System Data about your customer

- Demographics
- Behavior
- Revenues

Model

- Churn Prediction
- Upselling Likelihood
- Product Propensity /NBO
- Campaign Management
- Customer Segmentation

8

• ...

Customer History

Risk Prognosis

Demand Prediction

- How many taxis do I need in NYC on Wednesday at noon?

Recommendation Engines / Market Basket Analysis

Fraud Detection

Transactions

- Trx 1
- Trx 2
- Trx 3
- Trx 4
- Trx 5
- Trx 6
- •

Model

Sentiment Analysis

Samsung

Samsung Galaxy S7 Edge G935A 32GB Unlocked - Gold Platinum

★★★★★ Beautiful phone from a wonderful seller! By on May 29, 2017 Color: Gold | Verified Purchase This practically new beautiful phone well exceeded my expectations!

会合合合 One Star By on August 3, 2016 Color: Black Onyx **Verified Purchase** Very bad experience

Anomaly Detection

Predicting mechanical failure as late as possible but before it happens

Only some Spectral Time Series shows the break down

via REST

Basic Concepts in Data Science

What is a Learning Algorithm?

A learning algorithm adjusts (learns) the model parameters β throughout a number of iterations to maximize/minimize a likelihood/error function on *y*.

Algorithm Training / Learning

- The model *learns / is trained* during the *learning / training* phase to produce the right answer y (a.k.a., label)
- That is why machine learning ©
- Many different algorithms for three ways of learning:
 - Supervised
 - Unsupervised
 - Semi-supervised

Supervised Learning

- $X = (x_1, x_2)$ and $y = \{yellow, gray\}$
- A training set with many examples of (X, y)
- The model learns on the examples of the training set to produce the right value of y for an input vector X

Supervised Learning: Classification vs. Regression

- $X = (x_1, x_2)$ and $y = \{label 1, \dots, label n\}$ or $y \in \mathbb{R}$
- A training set with many examples of (*X*, *y*)
- The model learns on the examples of the training set to produce the right value of y for an input vector X

Classification

y = {yellow, gray}

- *y* = {churn, no churn}
- *y* = {increase, unchanged, decrease}
- y = {blonde, gray, brown, red, black}
- $y = \{\text{job 1}, \text{ job 2}, \dots, \text{ job n}\}$

Numerical Predictions (Regression)

- *y* = temperature
- *y* = number of visitors
- y = number of kW
- y = price
- y = number of hours

Process Overview for Supervised Learning

Training vs. Testing: Partitioning

- *Training phase*: the algorithm trains a model using the data in the training set
- Testing phase: a metric measures how well the model is performing on data in a new dataset (the test set)

Unsupervised Learning

- $X = (x_1, x_2)$ and $y = \{yellow, gray\}$
- A training set with many examples of (X, y)
- The model learns to group the examples X of the training set based on similarity (closeness) or probability

Semi-Supervised Learning

- $X = (x_1, x_2)$ and $y = \{yellow, gray\}$
- A training set with many examples of (X, y) and some samples (X, y)
- The model labels the data in the training set using a modified unsupervised learning procedure

The CRISP-DM Cycle

► → ①						
WIKIPEDIA The Free Encyclopedia	Article Talk Cross Industry Standard Process for Data Mining From Wikipedia, the free encyclopedia					
Main page Contents Featured content Current events Random article Donate to Wikipedia Wikipedia store	Cross Industry Standard Process for Data Mining, commonly known by its acronym CRISP-DM, ^[1] is a da website (KDNuggets) in 2002, 2004, 2007 and 2014 show that it was the leading methodology used by indust many people reported using CRISP-DM. A review and critique of data mining process models in 2009 called th models include Kurgan and Musilek's 2006 review, ^[7] and Azevedo and Santos' 2008 comparison of CRISP-DI (SIG) responsible along with the website has long disappeared (see History of CRISP-DM). In 2015, IBM Corporation released a new methodology called <i>Analytics Solutions Unified Method for Data Min</i>					
Interaction Help About Wikipedia Community portal Recent changes Contact page	Contents [hide] 1 Major phases 2 History 3 References 4 External Links					
Tools What links here Related changes	Major phases [edit]					

https://en.wikipedia.org/wiki/Cross_Industry_Standard_ Process_for_Data_Mining

The Data Science Life Cycle

KNIME Software for the Entire Data Science Life Cycle

Exercise

- Let's recap the different types of data science problems from a technical perspective
- Let's match the collected use cases to different data science problems

Decision Tree Algorithm

Goal: A Decision Tree

Outlook	Wind	Temp	(Winter) Storage	Sailing
sunny	3	30	no	yes
sunny	3	25	no	no
rain	12	15	no	yes
overcast	15	2	yes	no
rain	16	25	no	yes
sunny	14	18	no	yes
rain	3	5	yes	no
sunny	9	20	no	yes
overcast	14	5	yes	no
sunny	1	7	yes	no
rain	4	25	no	no
rain	14	24	no	yes
sunny	11	20	no	yes
sunny	2	18	no	no
overcast	8	22	no	yes
overcast	13	24	no	yes

How can we Train a Decision Tree with KNIME Analytics Platform

Goal: A Decision Tree

Outlook	Wind	Temp	Storage	Sailing
sunny	3	30	yes	yes
sunny	3	25	yes	no
rain	12	15	yes	yes
overcast	15	2	no	no
rain	16	25	yes	yes
sunny	14	18	yes	yes
rain	3	5	no	no
sunny	9	20	yes	yes
overcast	14	5	no	no
sunny	1	7	no	no
rain	4	25	yes	no
rain	14	24	yes	yes
sunny	11	20	yes	yes
sunny	2	18	yes	no
overcast	8	22	yes	yes
overcast	13	24	yes	yes

Possible Split Criterion: Gain Ratio

Based on entropy = measure for information / uncertainty

Entropy $(p) = -\sum_{i=0}^{n} p_i \log_2 p_i$ for $p \in \mathbb{Q}^n$

Possible Split Criterion: Gain Ratio

Split criterion:

 $Gain = Entropy_{Before} - Entropy_{After}$

 $Gain = Entropy_{Before} - \frac{6}{13} Entropy_1 - \frac{7}{13} Entropy_2$

Next splitting feature: Feature with highest *Gain*

Problem: Favors features with many different values

Solution: Gain Ratio

 $GainRatio = \frac{Gain}{SplitInfo} = \frac{Entropy_{Before} - \sum_{i=1}^{k} w_i Entropy_i}{-\sum_{i=1}^{k} w_i \log_2 w_i}$

Possible Split Criterion: Gini Index

Gini index is based on Gini impurity:

$$Gini(p) = 1 - \sum_{i=1}^{n} p_i^2 \quad \text{for } p \in \mathbb{Q}^n$$
$$Gini(p) = 1 - \frac{7^2}{13^2} - \frac{6^2}{13^2}$$

Split criterion:

$$Gini_{Index} = \sum_{i=1}^{n} w_i Gini_i$$

$$Gini_{Index} = \frac{6}{13}Gini_1 + \frac{7}{13}Gini_2$$

Next splitting feature: Feature with lowest *Gini*_{Index}

What happens for numerical Input Features?

Subset for each value? – NO **Solution:** Binary splits

The Deeper the Better?!

Overfitting vs Underfitting

Model overlooks underlying patterns in the training set

Model captures correlations in the training set

Model memorizes the training set rather then finding underlying patterns

Overfitting vs Underfitting

Underfitting

 A model that can neither model the training data nor generalize to new data

Overfitting

- Model that fits the training data too well, including details and noise
- Negative impact on the model's ability to generalize

Controlling the Tree Depth

Goal: Tree that generalizes to new data and doesn't overfit

Pruning	Early stopping
Idea: Cut branches that seem as result from overfitting	Idea: Define a minimum size for the tree leaves
Techniques:Reduced Error PruningMinimum description length	

Pruning - Minimum Description Length Pruning (MDL)

Applying the Model – What are the Outputs?

e Hilite	Navigation	View			
Tal	ble "default" – R	ows: 879	Spec - Columns: 82	Properties	Flow Variables
Row ID	SalePr	S rank	D P (rank=Low)	D P (rank=High)	S Prediction (rank
10	189000	Low	0.889	0.111	Low
11	175900	Low	1	0	Low
13	180400	Low	1	0	Low
15	212000	Low	0.946	0.054	Low
21	190000	High	0	1	High
22	170000	High	0.2	0.8	High
27	126000	Low	1	0	Low
28	115000	Low	1	0	Low
33	127500	Low	1	0	Low

No True Child Strategy

	Outlook	Wind	Temp	Storage	Sailing
	sunny	3	30	yes	yes
	sunny	3	25	yes	no
ng	rain	12	15	yes	yes
ini	rain	16	25	yes	yes
ิต	sunny	14	18	yes	yes
F	rain	3	5	no	no
	sunny	9	20	yes	yes
	sunny	1	7	no	no
	rain	4	25	yes	no
σ	rain	14	24	yes	yes
Ü	sunny	11	20	yes	yes
est	sunny	2	18	yes	no
Ĕ	overcast	8	22	yes	yes
	overcast	13	24	yes	yes

What happens with outlook = overcast?

	PMMLSettings	Flow variables
No true child	strategy	
	returnLastPrec	liction
	returnNullPrec	liction
Missing Value	Strategy	
	IastPredicti	ion
	none	

Evaluation of Classification Models

Evaluation Metrics

- Why evaluation metrics?
 - Quantify the power of a model
 - Compare model configurations and/or models, and select the best performing one
 - Obtain the expected performance of the model for new data
- Different model evaluation techniques are available for
 - Classification/regression models
 - Imbalanced/balanced target class distributions

Definition:

Overall accuracy = $\frac{\# Correct \ classifications \ (test \ set)}{\# \ All \ events \ (test \ set)}$

The proportion of correct classifications

- Downsides:
 - Only considers the performance in general and not for the different classes
 - Therefore, not informative when the class distribution is unbalanced

Confusion Matrix for Sailing Example

Sailing yes / no	Predicted class: yes	Predicted class: no
True class: yes	22	3
True class: no	12	328

Sailing yes / no	Predicted class: yes	Predicted class: no
True class: yes	0	25
True class: no	0	340

Accuracy
$$=\frac{350}{365}=0,96$$

Accuracy $=\frac{340}{365}=0,93$

- Rows true class values
- Columns predicted class values
- Numbers on main diagonal correctly classified samples
- Numbers off the main diagonal misclassified samples

Confusion Matrix

Arbitrarily define one class value as POSITIVE and the remaining class as NEGATIVE

	Predicted class positive	Predicted class negative	۲
True class	TRUE	FALSE	۲
positive	POSITIVE	NEGATIVE	م
True class	FALSE	TRUE	F
negative	POSITIVE	NEGATIVE	
			- F

TRUE POSITIVE (**TP**): Actual and predicted class is positive

TRUE NEGATIVE (**TN**): Actual and predicted class is negative

FALSE NEGATIVE (**FN**): Actual class is positive and predicted negative

FALSE POSITIVE (**FP**): Actual class is negative and predicted positive

Use these four statistics to calculate other evaluation metrics, such as overall accuracy, true positive rate, and false positive rate

ROC Curve

- The ROC Curve shows the false positive rate and true positive rate for different threshold values
 - False positive rate (FPR)
 - negative events incorrectly classified as positive
 - True positive rate (TPR)
 - positive events correctly classified as positive

KNIME

Cohen's Kappa (κ) vs. Overall accuracy

	Positive	Negative	•			Positive	Negative
Positive	14	6		Switch TP and FP	Positive	6	14
Negative	5	75			Negative	5	75
p_{e1} :	$=\frac{19}{100}\times\frac{20}{100}$			ŕ		$p_{e1} = \frac{1}{10}$	$\frac{1}{10} \times \frac{20}{100}$
<i>p</i> _{e2} :	$=\frac{81}{100}\times\frac{80}{100}$			Overall		$p_{e2} = \frac{8}{10}$	$\frac{9}{100} \times \frac{80}{1000}$
$p_e = p_e$	$_1 + p_{e2} = 0.6$	586		accuracy		$p_e = p_{e1} + \gamma$	$p_{e2} = 0.734$
$p_0 =$	$=\frac{89}{100}=0.89$	ŀ	< = 1: p	erfect model		$p_0 = \frac{81}{100}$	$\frac{1}{0} = 0.81$
$= \frac{p_0 - p_e}{1 - p_e} =$	$\frac{0.204}{0.314} \approx 0$.65 F	perform c = 0: the sequal sequence of the seq	ance ne model performan I to a random classif	$\kappa = \frac{p}{r}$	$\frac{p_0 - p_e}{1 - p_e} = \frac{0.0}{0.2}$	$\frac{176}{166} = 0.2$

Exercise: Decision_Tree_exercise

- Dataset: Sales data of individual residential properties in Ames, Iowa from 2006 to 2010.
- One of the columns is the overall condition ranking, with values between 1 and 10.
- Goal: train a binary classification model, which can predict whether the overall condition is high or low.

You can download the training workflows from the KNIME Community Hub: https://hub.knime.com/knime/spaces/Education/latest/Courses/

Exercise Session 1

Import the course material to KNIME Analytics Platform

Exercise: Decision_Tree_exercise

Use Case Description

The dataset we use in this exercise describes the sale of individual residential properties in Ames, Iowa from 2006 to 2010. One of the columns is the overall condition ranking, with values between 1 and 10. The goal of this exercise is to train a binary classification model, which can predict whether the overall condition is high or low.

To do so, the workflow below reads the data set and creates the class column based on overall condition ranking, which is called rank and has the values low if the overall condition is smaller or equal to 5, otherwise high. It is now on you continue this workflow!

Exercise: Decision Tree

- 1) Use the Partitioning node to split data into training (70%) and test set (30%)
- use stratified sampling based on the column rank, to retain the distribution of the class values in both output tables.
- Train a Decision Tree model to predict the overall condition of a house (high/low) (Decision Tree Learner node)
 Select the "rank" column as the class column
- 3) Use the trained model to predict the rank of the houses in the test set (Decision Tree Predictor node)
- Evaluate the accuracy of the decision tree model (Scorer (Java Script) node)
- Select "rank" as the actual column and "Prediction (rank)" as the predicted column
- What is the accuracy of the model?
- Visualize the ROC curve (ROC Curve node)
- Make sure that the checkbox "append columns with normalized class distribution" in the Decision Tree Predictor node is activated
- Select "rank" as Class column and "High" as Positive class value. Include only the "P (rank=High)" column
- 6) Optional: Try different setting options for the decision tree algorithm. Can you improve the model performance?

Regression

Regression Analysis

- Goal: Explain how target attribute depends on descripitive attributes
 - Target attribute
- → Response variable, Target
- Commnality with models of Classification
 - First construct the model
 - Second, use the model to predict
- Difference from Classification
 - Classification model aims to predict categorical class labels
 - Regression model aims at predicting continuous values

Regression

Predict numeric outcomes on existing data (supervised)

Applications

- Forecasting
- Quantitative Analysis

Methods

- Linear
- Polynomial
- Regression Trees
- Partial Least Squares

Variable	Coeff.	Std. Err.	t-value	P>ltl
Petal.Length	0.4158	0.0096	43.3872	0.0
Intercept	-0.3631	0.0398	-9.1312	4.44E-16

Linear Regression Algorithm

Regression Line

- Given a data set with two continuous attributes, x and y
- There is an approximate linear dependency between x and y

Intercept

Slope

KNIMF

Regression Line

- Given a data set with two continuous attributes, x and y
- There is an approximate linear dependency between x and y

Intercept

 We find a regression line (i.e., determine the parameters a and b) such that the line fits the data as well as possible

Slope

• Examples:

- Trend estimation (e.g., oil price over time)
- Epidemiology (e.g., cigarette smoking vs. lifespan)
- Finance (e.g., return on investment vs. return on all risky assets)
- Economics (e.g., spending vs. available income)

Predicts the values of the target variable ybased on a linear combination of the values of the input feature(s) x_i

Two input features: $\hat{y} = a_0 + a_1 x_1 + a_2 x_2$

p input features: $\hat{y} = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_p x_p$

- Multiple regression: several input features → regression hyper-plane
- Residuals: differences between observed and predicted values (errors)
 Use the residuals to measure the model fit

Simple Linear Regression

Optimization goal: minimize sum of squared residuals

Simple Linear Regression

• Think of a straight line $\hat{y} = f(x) = a + bx$

- Find a and b to model all observations (x_i, y_i) as close as possible
- ► SSE $F(a,b) = \sum_{i=1}^{n} (f(x) y_i)^2 = \sum_{i=1}^{n} (a + bx_i y_i)^2$ should be minimal

That is:

$$\frac{\partial F}{\partial a} = \sum_{i=1}^{n} 2(a + bx_i - y_i) = 0$$
$$\frac{\partial F}{\partial b} = \sum_{i=1}^{n} 2(a + bx_i - y_i) x_i = 0$$

• \rightarrow A unique solution exists for *a* and *b*

Linear Regression

Optimization goal: minimize the squared residuals

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \sum_{j=0}^{n} a_j x_{j,i})^2 = (y - aX)^T (y - aX)$$

Solution:

$$\hat{a} = (X^T X)^{-1} X^T y$$

Linear Regression Learner

- Computational issues:
 - X^TX must have full rank, and thus be invertible (Problems arise if linear dependencies between input features exist)
 - Solution may be unstable, if input features are almost linearly dependent

Linear Regression: Summary

- Positive:
 - Strong mathematical foundation
 - Simple to calculate and to understand (For moderate number of dimensions)
 - High predictive accuracy (In many applications)
- Negative:
 - Many dependencies are non-linear (Can be generalized)
 - Model is global and cannot adapt well to locally different data distributions But: Locally weighted regression, CART

Predicts the values of the target variable ybased on a polynomial combination of degree d of the values of the input feature(s) x_i

$$\tilde{y} = a_0 + \sum_{j=1}^p a_{j,1} x_j + \sum_{j=1}^p a_{j,2} x_j^2 + \dots + \sum_{j=1}^p a_{j,d} x_j^d$$

- Simple regression: one input feature \rightarrow regression curve
- Multiple regression: several input features \rightarrow regression hypersurface
- Residuals: differences between observed and predicted values (errors)
 Use the residuals to measure the model fit

Evaluation of Regression Models

Numeric Errors: Formulas

Error Metric	Formula	Notes
R-squared	$1 - \frac{\sum_{i=1}^{n} (y_i - f(x_i))^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$	Universal range: the closer to 1 the better
Mean absolute error (MAE)	$\frac{1}{n}\sum_{i=1}^{n} y_i-f(x_i) $	Equal weights to all distances Same unit as the target column
Mean squared error (MSE)	$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$	Common loss function
Root mean squared error (RMSE)	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i - f(x_i))^2}$	Weights big differences more Same unit as the target column
Mean signed difference	$\frac{1}{n}\sum_{i=1}^{n} (y_i - f(x_i))$	Only informative about the direction of the error
Mean absolute percentage error (MAPE)	$\frac{1}{n} \sum_{i=1}^{n} \frac{ y_i - f(x_i) }{ y_i }$	Requires non-zero target column values

MAE (Mean Absolute Error) vs. RMSE (Root Mean Squared Error)

MAE	RMSE
Easy to interpret – mean absolute error	Cannot be directly interpreted as the average error
All errors are equally weighted	Larger errors are weighted more
Generally smaller than RMSE	Ideal when large deviations need to be avoided

Example:

Actual values = [2,4,5,8],

Case 1: Predicted Values = [4, 6, 8, 10]

Case 2: Predicted Values = [4, 6, 8, 14]

	MAE	RMSE
Case 1	2.25	2.29
Case 2	3.25	3.64

R-squared vs. RMSE

R-squared	RMSE
Relative measure : Proportion of variability explained by the model	Absolute measure: How much deviation at each point
Range: Usually between 0 and 1. 0 = no variability explained 1 = all variability explained	Same scale as the target

Example:

Actual values = [2,4,5,8],

Case 1: Predicted Values = [3, 4, 5, 6]

Case 2: Predicted Values = [3, 3, 7, 7]

		R-sq	RMSE	
	Case 1	0.96	1.12	
	Case 2	0.65	1.32	

Numeric Scorer

- Similar to scorer node, but for nodes with *numeric* predictions
- Compare dependent variable values to predicted values to evaluate model quality.
- Report R², RMSE, MAPE, etc.

Numeric Scorer

▲ Statistics - 0:393 - Numeric Scorer — □			×				
File Hilite Navigation View							
Та	ble "Scores" - Rows: 6	Spec - Column: 1	Properties	Flow Variables			
Row ID		D MA(Irre	egular Componer	nt)			
	R^2		0.343				
mean absolute error		0.773					
mean squared error		2.413					
root mean squared error		1.553					
mean signed difference		-0.003					
mean absolute percentage error		7.064					

Exercises

- Regression Exercises:
 - Goal: Predicting the house price
 - 01_Linear_Regression_exercise

L4-ML Introduction to Machine Learning Algorithm
 Session_1
 Session_2
 01_Exercises
 01_Linear_Regression_exercise
 02_Regression_Tree_exercise
 03_Random_Forest_exercise
 04_Logistic_Regression_exercise
 01_Linear_Regression_solution
 02_Regression_Tree_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 04_Logistic_Regression_solution

Regression Tree

Regression Tree: Goal

Regression Tree: Initial Split

Regression Tree: Initial Split

Regression Tree: Growing the Tree

Regression Tree: Final Model

Start with a single node containing all points.

- 1. Calculate c_i and E_i .
- 2. If all points have the same value for feature x_i , stop.

- $E_{j,s}$ doesn't reduce as much \rightarrow stop
- A node contains less than the minimum node size \rightarrow stop
- Otherwise, take that split, creating two new nodes.
- In each new node, go back to step 1.

Regression Trees: Summary

- Differences to decision trees:
 - Splitting criterion: minimizing intra-subset variation (error)
 - Pruning criterion: based on numeric error measure
 - Leaf node predicts average target values of training instances reaching that node
- Can approximate piecewise constant functions
- Easy to interpret

Regression Trees: Pros & Cons

- Finding of (local) regression values (average)
- Problems:
 - No interpolation across borders
 - Heuristic algorithm: unstable and not optimal.
- Extensions:
 - Fuzzy trees (better interpolation)
 - Local models for each leaf (linear, quadratic)

Exercises

- Regression Exercises:
 - Goal: Predicting the house price
 - 02_Regression_Tree_exercise

L4-ML Introduction to Machine Learning Algorithm
 Session_1
 Session_2
 01_Exercises
 01_Linear_Regression_exercise
 02_Regression_Tree_exercise
 03_Random_Forest_exercise
 04_Logistic_Regression_exercise
 01_Linear_Regression_solution
 02_Regression_Tree_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 04_Logistic_Regression_solution

Ensemble Models

Tree Ensemble Models

- General idea: take advantage of the "wisdom of the crowd"
- Ensemble models: Combining predictions from many predictors, e.g. decision trees
- Leads to a more accurate and robust model
- Model is difficult to interpret
 - There are multiple trees in the model

Typically for classification, the individual models vote and the majority wins; for regression, the individual predictions are averaged

Bagging - Idea

- One option is "bagging" (Bootstrap AGGregatING)
- For each tree / model a training set is generated by sampling uniformly with replacement from the standard training set

Example for Bagging

Full training set

RowID	<i>x</i> ₁	<i>x</i> ₂	у
Row_1	2	6	Class 1
Row_2	4	1	Class 2
Row_3	9	3	Class 2
Row_4	2	7	Class 1
Row_5	8	1	Class 2
Row_6	2	6	Class 1
Row_7	5	2	Class 2

Sampled training set

RowID	<i>x</i> ₁	<i>x</i> ₂	у
Row_3	9	3	Class 2
Row_6	2	6	Class 1
Row_1	2	6	Class 1
Row_3	9	3	Class 2
Row_5	8	1	Class 2
Row_6	2	6	Class 1
Row_1	2	6	Class 1

An Extra Benefit of Bagging: Out of Bag Estimation

- Able to evaluate the model using the training data
- Apply trees to samples that haven't been used for training

ile	e Hilite	Navigat	ion View					
		Та	ble "default"	- Rows: 2666	Spec – Columns: 26	Properties	Flow Variables	
	Row ID	S State	D P (Chu	urn=0) D P (Ch	urn=1) S Churn (Out-	of-bag) D Chu	rn (Out-of-bag) model	count
	Row1 Row0	.s	0.943	0.057	0	0.943	35	
	Row2_Row1)H	1	0	0	1	33	
	Row3_Row2	IJ	1	0	0	1	37	
	Row4_Row3)H	0.528	0.472	0	0.528	36	
	Row5_Row4	ж	0.976	0.024	0	0.976	41	
	Row6_Row5	ιL	0.848	0.152	0	0.848	33	
	Row7_Row6	1A	0.833	0.167	0	0.833	36	
	Row9_Row8	А	0.667	0.333	0	0.667	30	
	Row11_Ro	. N	0.138	0.862	1	0.862	29	
	Row13_Ro	. A	0.974	0.026	0	0.974	39	
	Row14_Ro	. 1T	0.917	0.083	0	0.917	36	
	Row15_Ro	. A	0.387	0.613	1	0.613	31	
	Row18_Ro	. т	0.974	0.026	0	0.974	39	
	Row19_Ro	. 'A	1	0	0	1	38	
	Row21_Ro	. L	0.971	0.029	0	0.971	34	
	Row22_Ro	. :0	0.03	0.97	1	0.97	33	
	Row23_Ro	Z	0.854	0.146	0	0.854	41	
	Row25_Ro	. 'A	0.973	0.027	0	0.973	37	
	Row26_Ro	. IE	0.886	0.114	0	0.886	35	
	Row27_Ro	. VY	0.912	0.088	0	0.912	34	
	Row28_Ro	. 1T	0.976	0.024	0	0.976	42	
	Row29_Ro	. 10	1	0	0	1	42	
	Row30_Ro	. 11	1	0	0	1	40	
	Row32_Ro	. IH	0.914	0.086	0	0.914	35	
-	Row33_Ro	. A	0.875	0.125	0	0.875	32	

Random Forest

- Bag of decision trees, with an extra element of randomization
- Each node in the decision tree only "sees" a subset of the input features, typically \sqrt{N} to pick from
- Random forests tend to be very robust w.r.t. overfitting

Boosting - Idea

- Starts with a single tree built from the data
- Fits a tree to residual errors from the previous model to refine the model sequentially

Boosting - Idea

Gradient boosting method

- A shallow tree (depth 4 or less) is built at each step
 - To fit residual errors from the previous step
 - Resulting in a tree $h_m(x)$
- The resulting tree is added to the latest model to update

 $F_m(x) = F_{m-1}(x) + \gamma_m h_m(x)$

- Where $F_{m-1}(x)$ is the model from the previous step
- The weight γ_m is chosen to minimize the loss function
 - Loss function: quantifies the difference between model predictions and data

Gradient Boosting Example – Regression

Gradient Boosted Trees

- Can be used for classification and regression
- Large number of iterations prone to overfitting
 - ~100 iterations are sufficient
- Can introduce randomness in choice of data subsets ("stochastic gradient boosting") and choice of input features

Ensemble Tree Nodes in KNIME Analytics Platform

Parameter Optimization

Exercises

Classification Exercises:

- Goal: Predicting the house condition (high /low)
- 03_Random_Forest_exercise (with optional exercise to build a parameter optimization loop)

L4-ML Introduction to Machine Learning Algorithm
 Session_1
 Session_2
 01_Exercises
 01_Linear_Regression_exercise
 02_Regression_Tree_exercise
 03_Random_Forest_exercise
 04_Logistic_Regression_exercise
 01_Linear_Regression_solution
 02_Regression_Tree_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 04_Logistic_Regression_solution
 04_Logistic_Regression_solution

Logistic Regression

What is a Logistic Regression (algorithm)?

Another algorithm to train a classification model

Why Shouldn't we Always use the Decision Tree?

Decision Boundary of a Logistic Regression

	Linear Regression	Logistic Regression
Target variable y	Numeric $y \in (-\infty, \infty)/[a, b]$	Nominal $y \in \{0, 1, 2, 3\}/\{red, white\}$
Functional relationship between features and	target value y $y = f(x_1,, x_n, \beta_0,, \beta_n)$ $y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$	class probability P ($y = class i$) $P(y = c_i) = f(x_1,, x_n, \beta_0,, \beta_n)$

Goal: Find the regression coefficients $\beta_0, ..., \beta_n$

Let's find out how Binary Logistic Regression works!

- Idea: Train a function, which gives us the probability for each class (0 and 1) based on the input features
- Recap on probabilities
 - Probabilities are always between 0 and 1
 - The probability of all classes sum up to 1

$$P(y = 1) = p_1 = P(y = 0) = 1 - p_1$$

→ It's sufficient to model the probability for one class

Let's Find Out How Binary Logistic Regression Works!

$$P(y = 1) = f(x_1, x_2; \beta_0, \beta_1, \beta_2) \coloneqq \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2)}}$$

Probability function given $x_1 = 2$

More General: Binary Logistic Regression

Model:

$$\pi = P(y = 1) = \frac{1}{1 + \exp(-z)}$$

With $z = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n = X \boldsymbol{\beta}$.

- Goal: Find the regression coefficients $\boldsymbol{\beta} = (\beta_0, ..., \beta_n)$
- Notation:
 - y_i is the class value for sample i
 - x_1, \dots, x_n is the set of input features, $X = (1, x_1, \dots, x_n)$
 - The training data set has *m* observations $(y_i, x_1^i, ..., x_n^i)$

How can we Find the Best Coefficients β ?

Maximize the product of the probabilities -> Likelihood function

$$L(\beta; y, X) = \prod_{i=1}^{m} P(y = y_i) = \prod_{i=1}^{m} \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

Why does it make sense to maximize this function?

$$P(y = y_i) = \begin{cases} \pi_i & \text{if } y_i = 1\\ 1 - \pi_i & \text{if } y_i = 0 \end{cases}$$
$$= \pi_i^{y_i} (1 - \pi_i)^{1 - y_i}$$

Remember: $\pi_i = P(y = 1)$ $u^0 = 1$ for $u \in \mathbb{R}$ $u^1 = u$ for $u \in \mathbb{R}$

Max Likelihood and Log Likelihood Functions

• Maximize the Likelihood function $L(\beta; y, X)$

$$\max_{\beta} L(\beta; y, X) = \max_{\beta} \prod_{i=1}^{m} \pi_{i}^{y_{i}} (1 - \pi_{i})^{1 - y_{i}}$$

• Equivalent to maximizing the Log Likelihood function $LL(\beta; y, X)$

$$\max_{\beta} LL(\boldsymbol{\beta}; \boldsymbol{y}, \boldsymbol{X}) = \max_{\beta} \sum_{i=1}^{n} y_i \ln(\pi_i) + (1 - y_i) \ln(1 - \pi_i)$$

How can we find this Coefficients?

- To find the coefficients of our model we want to find β so that the value of the function LL(β; y, X) is maximal
- KNIME Analytics Platform provides two algorithms
 - Iteratively re-weighted least squares
 - Uses the idea of the newton method
 - Stochastic average gradient descent

Idea: Gradient Descent Method

$\max LL(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y}) \Leftrightarrow \min -LL(\boldsymbol{\beta}; \boldsymbol{X}, \boldsymbol{y})$

- Example: min $-LL(\beta) \coloneqq f(\beta)$
- Start from an arbitrary point
- Move towards the minimum
- With step size Δs
- If $f(\beta)$ is strictly convex
 - Only one global minimum exists
- Z normalization of the input data lead to better convergence

Learning Rate / Step Length Δs

Learning Rate Δs

• Fixed:

$$\Delta s_k = \Delta s_0$$

• Annealing:

$$\Delta s_k = \frac{\Delta s_0}{1 + \frac{\alpha}{k}}$$

with iteration number k and decay rate α

Line Search: Learning rate strategy that tries to find the optimal learning rate

Is there a way to handle Overfitting as well? (optional)

- To avoid overfitting: add regularization by penalizing large weights
 - L_2 regularizations = Coefficients are Gauss distributed with $\sigma = \frac{1}{\lambda}$

$$l(\hat{\beta}; y, X) \coloneqq -LL(\hat{\beta}; y, X) + \frac{\lambda}{2} ||\hat{\beta}||_2^2$$

• L_1 regularizations = Coefficients are Laplace distributed with $\sigma = \frac{\sqrt{2}}{\lambda}$

$$l(\hat{\beta}; y, X) \coloneqq -LL(\hat{\beta}; y, X) + \lambda ||\hat{\beta}||_{1}$$

=> The smaller σ , the smaller the coefficients $\hat{\beta}$

Impact of Regularization

Interpretation of the Coefficients

e Hilite	Navigation	View				
Table "Co	oefficients an	d Statistics" – Rows: 237	Spec – Columns	: 6 Prope	erties Fl	ow Variables
Row ID	S Logit	S Variable	D Coeff.	D Std. Eri	. D z-sco	re D P> z
Row75	High	Year Built	-2.153	0.605	-3.56	0
Row76	High	Year Remod/Add	1.643	0.298	5.506	0
Row77	High	Roof Style=Gable	0.918	5.353	0.171	0.864
Row78	High	Roof Style=Gambrel	-0.494	5.514	-0.09	0.929
Row79	High	Roof Style=Hip	1.075	5.43	0.198	0.843
Row80	High	Roof Style=Mansard	-2.415	6.658	-0.363	0.717
Row81	High	Roof Style=Shed	-2.269	11.793	-0.192	0.847
Row82	High	Roof Matl=Membran	-0.014	140.765	-0	1

- Interpretation of the sign
 - $\beta_i > 0$: Bigger x_i lead to higher probability
 - $\beta_i < 0$: Bigger x_i lead to smaller probability

Interpretation of the p Value

Hilite	Navigation	View				
Table "Co	oefficients ar	nd Statistics" – Rows: 237	Spec – Colum	ns: 6 Prope	erties Flo	ow Variables
Row ID	S Logit	S Variable	D Coeff.	D Std. Err	. D z-sco	re D P> z
Row75	High	Year Built	-2.153	0.605	-3.56	0
Row76	High	Year Remod/Add	1.643	0.298	5.506	0
Row77	High	Roof Style=Gable	0.918	5.353	0.171	0.864
Row78	High	Roof Style=Gambrel	-0.494	5.514	-0.09	0.929
Row79	High	Roof Style=Hip	1.075	5.43	0.198	0.843
Row80	High	Roof Style=Mansard	-2.415	6.658	-0.363	0.717
Row81	High	Roof Style=Shed	-2.269	11.793	-0.192	0.847
Row82	High	Roof Matl=Membran	-0.014	140.765	-0	1

• p-value $< \alpha$: input feature has a significant impact on the dependent variable.

Summary Logistic Regression

- Logistic regression is used for classification problems
- The regression coefficients are calculated by maximizing the likelihood function, which has no closed form solution, hence iterative methods are used.
- Regularization can be used to avoid overfitting.
- The p-value shows us whether an independent variable is significant

Exercises

Classification Exercises:

- Goal: Predicting the house condition (high /low)
- 04_Logistic_Regression_exercise

L4-ML Introduction to Machine Learning Algorithm
 Session_1
 Session_2
 01_Exercises
 01_Linear_Regression_exercise
 02_Regression_Tree_exercise
 03_Random_Forest_exercise
 04_Logistic_Regression_exercise
 01_Linear_Regression_solution
 02_Regression_Tree_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 03_Random_Forest_solution
 04_Logistic_Regression_solution

Recommendation Engines

Recommendation Engines and Market Basket Analysis

A-priori Algorithm: the Association Rule

© 2023 KNIME AG. All rights reserved.

IF

Building the Association Rule

N shopping baskets

From "Frequent Itemsets" to "Rules"

Support, Confidence, and Lift

The rules with support, confidence and lift above a threshold \rightarrow most reliable ones

Association Rule Mining (ARM): Two Phases

A-Priori Algorithm: Example

- Let's consider milk, diaper, and beer: $\{milk, diaper\} \Rightarrow beer$
- How often are they found together across all shopping baskets?
- How often are they found together across all shopping baskets containing the antecedents?

A-Priori Algorithm: Example

- Let's consider milk, diaper, and beer: $\{milk, diaper\} \Rightarrow beer$
- How often are they found together across all shooping baskets?
- How often are they found together across all shopping baskets containing the antecedents?

TID	Transactions							
1	Bread, Milk							
2	Bread, Diaper, Beer, Eggs							
3	Milk, Diaper, Beer, Coke							
4	Bread, Milk, Diaper, Beer							
5	Bread, Milk, Diaper, Coke							

$$s(milk, diaper) = \frac{P(milk, diaper)}{|T|} = \frac{3}{5} = 0.6$$

$$s(beer) = \frac{P(beer)}{|T|} = \frac{3}{5} = 0.6$$

Rule lift = $\frac{s(milk, diaper, beer)}{s(milk, diaper) \times s(beer)}$
= $\frac{0.4}{0.6 \times 0.6} = 1.11$

Association Rule Mining: Is it Useful?

- David J. Hand (2004): "Association Rule Mining is likely the field with the highest ratio of number of published papers per reported application."
- KNIME Blog post:

https://www.knime.com/knime-applications/market-basket-analysis-and-recommendation-engines

Recommendation Engines or Market Basket Analysis

From the analysis of the reactions of many people to the same item ...

Recommendation

THEN A is more likely to have B's opinion on another item than that of a randomly chosen person

theory11 Artisan Playing Cards (Black) ***** 71 \$9 60

theory11 Artisan Playing

Cards (White)

\$10.75

theory11 High Victorian Playing Cards \$10 70

theory11 Citizen Plaving

**** 72

\$9.93 **vprime**

The Poetry and Short Stories of Dorothy. > Dorothy Parker Hardcover \$30,46

Cards

Collaborative Filtering (CF)

Collaborative filtering systems have many forms, but many common systems can be reduced to two steps:

- 1. Look for users who share the same rating patterns with the active user (the user whom the recommendation is for)
- 2. Use the ratings from those like-minded users found in step 1 to calculate a prediction for the active user
- 3. Implemented in Spark

Spark Collaborative

https://www.knime.com/blog/movie-recommendations-with-spark-collaborative-filtering

Exercises:

Market Basket Analysis

- 02_Build_Association_Rules_for_MarketBasketAnalysis_exercise
- 03_Apply_Association_Rules_for_MarketBasketAnalysis_exercise

L4-ML Introduction to Machine Learning Algorithms
> T Session_1
> T Session_2
✓
✓
▲ 01_Simple_Neural_Network_exercise
🛕 02_Build_Association_Rules_for_MarketBasketAnalysis_exercise
▲ 03_Apply_Association_Rules_for_MarketBasketAnalysis_exercise
✓
▲ 01_Simple_Neural_Network_solution
🛕 02_Build_Association_Rules_for_MarketBasketAnalysis_solution
▲ 03_Apply_Association_Rules_for_MarketBasketAnalysis_solution

Artificial Neurons and Networks

Biological vs. Artificial

Biological Neuron

Artificial Neuron (Perceptron)

Biological Neural Networks

Artificial Neural Networks

(Multilayer Perceptron, MLP)

$$y = f(x_1w_1 + x_2w_2 + b)$$

 $\sum x_i w_i$

Forward pass:

$$\boldsymbol{o} = f(W_x^2 \boldsymbol{x})$$

$$y = f(W_y^3 \boldsymbol{o})$$

Frequently used activation functions

Minutes attended

Passed certification

Didn't pass certification

Input features: x_1 = minutes attended x_2 = workflows build Output: $\hat{y} =$ Probability that a person passed $\hat{y} \ge 0.5 \Rightarrow Passed$ and $\hat{y} < 0.5 \Rightarrow Failed$

Minutes attended

- Passed certification
- Didn't pass certification
- + New sample
 - x_1 = minutes attended = 170 x_2 = workflows build = 8

 x_1 = minutes attended x_2 = workflows build $\hat{y} =$ Probability that a person passed $\hat{y} \ge 0.5 \Rightarrow Passed$ and $\hat{y} < 0.5 \Rightarrow Failed$

Training a Neural Network = Finding Good Weights

Learning Rule from Gradient Descent

Adjust the weight for the next step by the adjustment term $\Delta w(t)$

Idea Behind Gradient Descent

Backpropagation

Efficient way to calculate the gradient during optimization

Forward pass

Backward pass

Input features: x_1 = minutes attended x_2 = workflows build Output: y = Probability that a person passed $y \ge 0.5 \Rightarrow Passed$ and $y < 0.5 \Rightarrow Failed$

Loss Landscape of a Real Neural Network

 A good choice for the step size η, aka learning rate, is important

 $W \leftarrow W - \eta \nabla_W J(x, W)$

 Many different optimizers with adaptive learning rates are available

Adam, Adadelta, Adagrad, ect

- Other important settings
 - Batch size, aka number of samples for one update
 - Number of epochs, aka how often each sample is used

Source: https://www.cs.umd.edu/~tomg/projects/landscapes/

Optimizers in Keras (optional)

Optimizer	How it works	Strengths	Weaknesses	When to use
SGD with momentum	Use the previous gradient to -Reduces oscillation accelerate convergence near maxima		-Const learning rate	
NAG (Nesterov accelerated gradient)	Use the current gradient to predict gradient	-Increased responsiveness	-Additional hyperparameter	RNN
Adagrad	Updating by cumulating sum of sq gradients from past	-Different learning parameters for different features	-Computationally expensive -Shrinking learning rate	Sparse data (e.g. text)
Adadelta	Modified Adagrad with decaying average of sq gradients from past	-Learning rate not dramatically shrinking like Adagrad	-Computationally expensive	Sparse data (e.g. text)
RMSProp	Modified Adagrad with sq gradients added very slowly	-Learning rate not dramatically shrinking like Adagrad		
Adam (Adaptive Moment Estimation)	RMSProp plus decaying average of gradients from past	-Fast convergence	-Computationally expensive	

Which Activation Functions? Which Loss Functions?

Depends on the problem you are working on

 ✓ Recommended △ Can be used 		Activa Hidden Layers			tion Functions Output Layer				Loss Functions							
Problems		Sigmoid	Tanh	ReLU	Sigmoid	Tanh	Linear	ReLU	Softmax	Binary CE	Hinge	Categorical CE	MSE	MSLE	MAE	
Classification	Binary cl	assification (0 vs 1)	✓	\checkmark	\checkmark	~					✓					
	Binary cl	assification (-1 vs 1)	\checkmark	✓	~		✓					✓				
	Multi-clas	ss classification	✓	✓	✓					✓			✓			
Regression	Regressi	on	✓	✓	✓	Δ	Δ	✓	Δ					✓		
	Regressi	on (wide range)	✓	\checkmark	✓			✓							✓	
	Regressi	on (possible outliers)	\checkmark	\checkmark	\checkmark			✓								✓

Codeless Deep Learning with KNIME Analytics Platform

Simple option for feed forward neural networks with activation function sigmoid

Codeless Deep Learning with KNIME Analytics Platform

Exercise

Neural Network

- Goal: Train an MLP to solve our classification problem (rank: high/low)
- 01_Simple_Neural_Network_exercise

- L4-ML Introduction to Machine Learning Algorithms
 - > b Session_1
 - > The Session_2
 - Session_3
 - - ▲ 01_Simple_Neural_Network_exercise
 - ▲ 02_Build_Association_Rules_for_MarketBasketAnalysis_exercise
 - ▲ 03_Apply_Association_Rules_for_MarketBasketAnalysis_exercise
 - - ▲ 01_Simple_Neural_Network_solution
 - ▲ 02_Build_Association_Rules_for_MarketBasketAnalysis_solution
 - ▲ 03_Apply_Association_Rules_for_MarketBasketAnalysis_solution

Deep Learning

From Neural Network To Deep Learning

Deep feed forward network

- Many additional layer types
 - Convolutional Layers for Images
 - Image classification, Image segmentation
 - Recurrent Layers for sequential data (join our next webinar)
 - Time series prediction, language models, neural machine translation
- New architectures
 - GANs
 - Transformer networks

Recurrent Neural Networks

What are Recurrent Neural Networks?

- Recurrent Neural Network (RNN) are a family of neural networks used for processing of sequential data
- RNNs are used for all sorts of tasks:
 - Language modeling / Text generation
 - Text classification
 - Neural machine translation
 - Image captioning
 - Speech to text
 - Numerical time series data, e.g. sensor data

Neural Network: Code-free

Convolutional Neural Networks (CNN)

Convolutional Neural Network (CNN)

- A CNN is a neural network with at least one convolutional layer.
- CNNs are commonly used when data has spatial relationships, e.g. images
- CNN learns a hierarchy of features using multiple convolution layers that detect different features.

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Images from: <u>http://introtodeeplearning.com/slides/6S191_MIT_DeepLearning_L3.pdf</u>

Convolutional Neural Networks (CNN)

- Instead of connecting every neuron to the new layer a sliding window is used, which applies a filter on different parts of the image
- Some convolutions may detect edges or corners, while others may detect cats, dogs, or street signs inside an image

Image from: <u>https://towardsdatascience.com/a-</u> <u>comprehensive-guide-to-convolutional-neural-networks-</u> <u>the-eli5-way-3bd2b1164a53</u>

Convolutional Neural Networks

Building CNNs with KNIME

Unsupervised Learning: Clustering

Goal of Clustering Analysis

Discover hidden structures in unlabeled data (unsupervised)

Clustering identifies a finite set of groups (*clusters*) $C_1, C_2 \cdots, C_k$ in the dataset such that:

- Objects within the same cluster C_i shall be as similar as possible
- Objects of *different* clusters C_i , C_j $(i \neq j)$ shall be as dissimilar as possible

Clustering Applications

- Find "natural" clusters and desc
 - Data understanding
- Find useful and suitable groups
 - Data Class Identification
- Find representatives for homogenous groups
 - Data Reduction
- Find unusual data objects
 - Outlier Detection
- Find random perturbations of the data
 - Noise Detection

Methods

- K-means
- Hierarchical
- DBScan

Examples

- Customer segmentation
- Molecule search
- Anomaly detection

Cluster Properties

- Clusters may have different sizes, shapes, densities
- Clusters may form a hierarchy
- Clusters may be overlapping or disjoint

Types of Clustering Approaches

Density based Clustering e.g. DBSCAN

Clustering by Partitioning

e.g. k-Means

Types of Clustering Approaches

No clustering method works universally well

Clustering: Partitioning k-Means

Partitioning

Goal:

A (disjoint) partitioning into k clusters with minimal costs

- Local optimization method:
 - choose k initial cluster representatives
 - optimize these representatives iteratively
 - assign each object to its most similar cluster representative
- Types of cluster representatives:
 - Mean of a cluster (construction of central points)
 - Median of a cluster (selection of representative points)
 - Probability density function of a cluster (*expectation maximization*)

Given k, the k-Means algorithm is implemented in four steps:

- 1. Randomly choose k objects as the initial centroids
- 2. Assign each object to the cluster with the **nearest** centroid
- 3. Re-compute the centroids as the centers of the newly formed clusters
- 4. Go back to Step 2, repeat until the updated centroids stop moving significantly

k-Means Algorithm

Comments of the k-Means Method

- Advantages:
 - Relatively efficient
 - Simple implementation

Weaknesses:

- Often terminates at a local optimum
- Applicable only when mean is defined (what about categorical data?)
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Problem with K-Means

An object with an extremely large value can substantially distort the distribution of the data.

One solution: K-Medoids

Instead of taking the **mean** value of the objects in a cluster as a reference point, **medoids** can be used, which are the most centrally located objects in a cluster.

Clustering: Distance Functions

Influence of Distance Function / Similarity

- Clustering vehicles:
 - red Ferrari
 - green Porsche
 - red Bobby car

- Distance Function based on maximum speed (numeric distance function):
 - Cluster 1: Ferrari & Porsche
 - Cluster 2: Bobby car
- Distance Function based on color (nominal attributes):
 - Cluster 1: Ferrari and Bobby car
 - Cluster 2[·] Porsche **1**11

The distance function affects the shape of the

clusters

↔ Numeric Distances String Distances

A Bit Vector Distances

Addition Matrix Distance

A Java Distance

⊕ Byte Vector Distances ↔ Mahalanobis Distance

Set Aggregated Distance

✓ ↔ Distance Calculation ✓ ♣ Distance Functions

Distance Functions for Numeric Attributes

For two objects $x = (x_1, x_2, \dots, x_d)$ and $y = (y_1, y_2, \dots, y_d)$:

- L_p -Metric (Minkowski-Distance) $dist(x,y) = \sqrt[p]{\sum_{i=1}^d |x_i - y_i|^p}$

$$dist(x, y) = \sum_{i=1}^{d} |x_i - y_i|$$

Maximum-Distance (
$$p = \infty$$
)

$$dist(x, y) = \max_{1 \le i \le d} \{|x_i - y_i|\}$$

Clustering: Quality Measures Silhouette

Optimal Clustering: Example

Cluster Quality Measures

Centroid μ_C : mean vector of all objects in clustering C

• Within-Cluster Variation:

$$TD^{2} = \sum_{i=1}^{k} \sum_{p \in C_{i}} dist(p, \mu_{C_{i}})^{2}$$

Between-Cluster Variation:

$$BC^{2} = \sum_{j=1}^{k} \sum_{i=1}^{k} dist(\mu_{C_{j}}, \mu_{C_{i}})^{2}$$

CQ

Clustering Quality (one possible measure):

Silhouette-Coefficient for object *x*

Silhouette-Coefficient [Kaufman & Rousseeuw 1990] measures the quality of clustering

- a(x): distance of object x to its cluster representative
- b(x): distance of object x to the representative of the "second-best" cluster
- Silhouette *s*(*x*) of *x*

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}}$$

...not so good...

 $a(x) \approx b(x)$

$$s(x) = \frac{b(x) - a(x)}{\max\{a(x), b(x)\}} \approx \frac{0}{b(x)} = 0$$

Silhouette-Coefficient for Clustering C

Silhouette coefficient s_c for clustering C is the average silhouette over all objects $x \in C$

$$s_c = \frac{1}{n} \sum_{x \in C} s(x)$$

- Interpretation of silhouette coefficient:
 - $s_c > 0.7$: strong cluster structure,
 - $s_c > 0.5$: reasonable cluster structure,

. . . .

Silhouette Coefficient over a Range of k

- Silhouette Coefficient Node in KNIME Analytics Platform
- Loop over various values of k

- Optimized k-means component
- Loop over various values of k

Silhouette Coefficient over k

Summary: Clustering by Partitioning

- Scheme always similar:
 - Find (random) starting clusters
 - Iteratively update centroid positions (compute new mean, swap medoids, compute new distribution parameters,...)
- Important:
 - Number of clusters k
 - Initial cluster position influences (heavily):
 - quality of results
 - speed of convergence
- Problems for iterative clustering methods:
 - Clusters of varied size, density and shape

Clustering: Linkage Hierarchical Clustering

Goal

Construction of a hierarchy of clusters (*dendrogram*)
 by merging/separating clusters with minimum/maximum distance

Dendrogram:

- A tree representing hierarchy of clusters, with the following properties:
 - Root: single cluster with the whole data set.
 - Leaves: clusters containing a single object.
 - Branches: merges / separations between larger clusters and smaller clusters / objects

Base Algorithm

- 1. Form initial clusters consisting of a single object, and compute the distance between each pair of clusters.
- 2. Merge the two clusters having minimum distance.
- 3. Calculate the distance between the new cluster and all other clusters.
- 4. If there is only one cluster containing all objects: Stop, otherwise go to step 2.

Single Linkage

Distance between clusters (nodes):

$$Dist(C_1, C_2) = \min_{p \in C_1, q \in C_2} \{dist(p, q)\}$$

Distance of the closest two points, one from each cluster

Merge Step: Union of two subsets of data points

Complete Linkage

Distance between clusters (nodes):

$$Dist(C_1, C_2) = \max_{p \in C_1, q \in C_2} \{dist(p, q)\}$$

Distance of the farthest two points, one from each cluster

Merge Step: Union of two subsets of data points

Average Linkage / Centroid Method

Distance between clusters (nodes):

$$Dist_{avg}(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{p \in C_1} \sum_{p \in C_2} dist(p, q)$$

Average distance of all possible pairs of points between C_1 and C_2

$$Dist_{mean}(C_1, C_2) = dist(mean(C_1), mean(C_2))$$

Distance between two centroids

- Merge Step:
 - union of two subsets of data points
 - construct the mean point of the two clusters

Comments on Single Linkage and Variants

- + Finds not only a "flat" clustering, but a hierarchy of clusters (dendrogram)
- + A single clustering can be obtained from the dendrogram (e.g., by performing a horizontal cut)

- Decisions (merges/splits) cannot be undone
- Sensitive to noise (Single-Link) (a "line" of objects can connect two clusters)
- Inefficient
 - \rightarrow Runtime complexity at least $O(n^2)$ for *n* objects

Linkage Based Clustering

- Single Linkage:
 - Prefers well-separated clusters
- Complete Linkage:
 - Prefers small, compact clusters
- Average Linkage:
 - Prefers small, well-separated clusters...

Single linkage

Complete linkage

Clustering: Density DBSCAN

DBSCAN - a density-based clustering algorithm - defines five types of points in a dataset.

- Core Points are points that have at least a minimum number of neighbors (MinPts) within a specified distance (ε).
- Noise Points are neither core points nor border points.
- Border Points are points that are within ε of a core point, but have less than MinPts neighbors.
- **Directly Density Reachable Points** are within ε of a core point.
- Density Reachable Points are reachable with a chain of Directly Density Reachable points.

Clusters are built by joining core and density-reachable points to one another.

Example with MinPts = 3

Core Point vs. Border Point vs. Noise

- t = Core point
- s = Boarder point
- n = Noise point

Directly Density Reachable vs. Density Reachable

- z is directly density reachable from t
- s is not directly density reachable from t, but density reachable via z

Note: But t is not density reachable from s, because s is not a Core point

DBSCAN [Density Based Spatial Clustering of Applications with Noise]

- For each point, DBSCAN determines the *ε*-environment and checks whether it contains more than *MinPts* data points → core point
- Iteratively increases the cluster by adding density-reachable points

DBSCAN [Density Based Spatial Clustering of Applications with Noise]

- For each point, DBSCAN determines the *ε*-environment and checks whether it contains more than *MinPts* data points → core point
- Iteratively increases the cluster by adding density-reachable points

Clustering:

- A density-based clustering C of a dataset D w.r.t. ε and MinPts is the set of all density-based clusters C_i w.r.t. ε and MinPts in D.
- The set *NoiseCL* ("noise") is defined as the set of all objects in D which do not belong to any of the clusters.

Property:

Let C_i be a density-based cluster and $p \in C_i$ be a core object.

 $C_i = \{o \in D \mid o \text{ density-reachable from } p \text{ w.r.t. } \varepsilon \text{ and } MinPts\}.$

DBSCAN [Density Based Spatial Clustering of Applications with Noise]

- DBSCAN uses (spatial) index structures for determining the ε-environment:
 → computational complexity *O*(*n* log *n*) instead of *O*(*n*²)
- Arbitrary shape clusters found by DBSCAN
- Parameters: ε and MinPts

Exercises

- Clustering
 - Goal: Cluster location data from California
 - 01_Clustering_exercise

L4-ML Introduction to Machine Learning Algorithms Session 1 Session 2 Session 3 > Session 4 νí ▲ 01_Clustering_exercise ▲ 02_Missing_Value_Handling_exercise ▲ 03_Outlier_Detection_exercise 04_Dimensionality_Reduction_exercise ▲ 05_Feature_Selection_exercise Image: O2 Solutions ▲ 01_Clustering_solution ▲ 02_Missing_Value_Handling_solution ▲ 03_Outlier_Detection_solution ▲ 04_Dimensionality_Reduction_solution ▲ 05_Feature_Selection_solution

 \sim

Deployment Options

Deploying the ML model

🔓 Component

ARIMA Predictor

© 2023 KNIME AG. All rights reserved.

Building a web service

2

Classification using KNIME Analytics Platform

- The machine learning Classification task (pipeline) is broken into 4 pieces
 - Reading and Blending
 - Pre-processing
 - Train, Optimize and score
 - Deploy

Deployment (Manual)

 The Deployment workflow must be able to take input data from external sources and generate predictions using the trained model

Call Workflow (Table Based)

- Calls and executes another workflow
- Use the KNIME Server Connection node if the other workflow is located on KNIME Server

					/
KNIME Server Call Se	ttings				
Server address:		No server c	onnection		
Invocation					
Short duration	the workflow is	expected to run q	uickly (less than 10 secon	ds)	
Long duration:	the workflow is	expected to run lo	onger than 10 seconds		
Retain job on fa	ilure				
Discard job on	successful execu	tion			
Norkflow Path: /L2	-LS KNIME Analy	tics Platform for L	Data Scientist (Life Science)	- Advanced/Se	Browse workflows
Workflow Path: /L2	-LS KNIME Analy	tics Platform for L	Data Scientist (Life Science)	- Advanced/S	Browse workflows
Workflow Path: /L2	-LS KNIME Analy	tics Platform for L	Pata Scientist (Life Science)	- Advanced/S	Browse workflows
Workflow Path: /L2	-LS KNIME Analy	tics Platform for L	Pata Scientist (Life Science)	- Advanced/S	Browse worknows
Workflow Path: /L2	-LS KNIME Analy	tics Platform for L	Jata Scientist (Life Science)	- Advanced/S	Browse workflows
Workflow Path: /L2	-LS KNIME Analy	tics Platform for L	ata Scientist (Life Science)	- Advanced/S	Browse workflows
Workflow Path: /L2	-LS KNIME Analy	tics Platform for L	ata Scientist (Life Science)	- Advanced/S	Browse worknows

Concept of integrated deployment

- Use your design workflow to automate creation of your production workflow
- Lets you capture the parts of your workflow that are needed in a production environment, like:
 - Custom data preprocessing
 - Model application for prediction
 - Anything else you might need, so that you can...
- Automatic deployment to KNIME Business Hub

Integrated Deployment

Closing the gap between Data Science Creation and Production

Classification using KNIME Analytics Platform

- The machine learning Classification task (pipeline) is broken into 4 pieces
 - Reading and Blending
 - Pre-processing
 - Train, Optimize and score
 - Deploy

Integrated Deployment in KNIME

 The training worklfow automatically writes the deployment workflow, so any changes done to the training workflow will be simultensouly pushed to deployment workflow

Example: Workflow in Production

- Captured workflow parts are combined
- Automatically added nodes:
 - Container Input (Table) node: This node receives a KNIME table from an external caller (i.e. the Call Workflow (Table Based) node) and makes it available at the output port.
 - Container Output (Table) node: This node sends a KNIME table to an external caller (i.e. the Call Workflow (Table Based) node)

Capture Workflow Start/End

Define the start and end point of the workflow you want to capture

Workflow Combiner

- If you are capturing more than one part of your workflow
- Connect first workflow part to upper input port
- Connect second workflow part to lower input port
- Add further input ports to combine more workflow parts

Workflow Writer

Write captured workflow to selected output location

Workflow Writer

Data Preparation

Motivation

Real world data is "dirty"

→ Contains missing values, noises, outliers, inconsistencies

Comes from different information sources

→ Different attribute names, values expressed differently, related tuples

Different value ranges and hierarchies

 \rightarrow One attribute range may overpower another

Huge amount of data

 \rightarrow Makes analyis difficult and time consuming

Data Preparation

- Data Cleaning & Standardization (domain dependent)
- Aggregations (often domain dependent)
- Normalization
- Dimensionality Reduction
- Outlier Detection
- Missing Value Imputation
- Feature Selection
- Feature Engineering
- Sampling
- Integration of multiple Data Sources

Data Preparation: Normalization
Example:

- Lengths in cm (100 200) and weights in kilogram (30 150) fall both in approximately the same scale
- What about lengths in m (1-2) and weights also in gram (30000 150000)?
 The weight values in mg dominate over the length values for the similarity of records!

Goal of normalization:

Transformation of attributes to make record ranges comparable

Normalization: Techniques

min-max normalization

$$y = \frac{x - x_{min}}{x_{max} - x_{min}} (y_{max} - y_{min}) + y_{min}$$

z-score normalization

$$y = \frac{x - mean(x)}{stddev(x)}$$

normalization by decimal scaling

$$y = \frac{x}{10^{j}}$$
 where j is the smallest integer for max(y) < 1
Here [ymin, ymax] is [-1,1]

Data Preparation: Missing Value Imputation

Missing Value Imputation: Motivation

Data is not always available

 E.g., many tuples have no recorded value for several attributes, such as weight in a people database

Missing data may be due to

- Equipment malfunctioning
- Inconsistency with other recorded data and thus deleted
- Data not entered (manually)
- Data not considered important at the time of collection
- Data format / contents of database changes

Types of missing values:

Example: Suppose you are modeling weight Y as a function of sex X

- Missing Completely At Random (MCAR): reason does not depend on its value or lack of value. There may be no particular reason why some people told you their weights and others didn't.
- Missing At Random (MAR): the probability that Y is missing depends only on the value of X.
 One sex X may be less likely to disclose its weight Y.
- Not Missing At Random (NMAR): the probability that Y is missing depends on the unobserved value of Y itself. Heavy (or light) people may be less likely to disclose their weight.

Missing Values Imputation

How to handle missing values?

- Ignore the record
- Remove the record
- Fill in missing value as:
 - Fixed value: e.g., "unknown", -9999, etc.
 - Attribute mean / median / max. / min.
 - Attribute most frequent value
 - Next / previous /avg interpolation / moving avg value (in time series)
 - A predicted value based on the other attributes (inference-based such as Bayesian, Decision Tree, ...)

Data Preparation: Outlier Detection (Optional)

Outlier Detection

 An outlier could be, for example, rare behavior, system defect, measurement error, or reaction to an unexpected event

Outlier Detection: Motivation

- Why finding outliers is important?
 - Summarize data by statistics that represent the majority of the data
 - Train a model that generalizes to new data
 - Finding the outliers can also be the focus of the analysis and not only data cleaning

Outlier Detection Techniques

- Knowledge-based
- Statistics-based
 - Distance from the median
 - Position in the distribution tails
 - Distance to the closest cluster center
 - Error produced by an autoencoder
 - Number of random splits to isolate a data point from other data

Material

Open for Innovation •	Hub Blog Forum Events Careers Contact Download Q
KINIME	SOFTWARE / SOLUTIONS / LEARNING / PARTNERS / COMMUNITY / ABOUT
Home > About > Blog	
/ News	Four Techniques for Outlier Detection
/ Blog	
/ Team	Mon, 10/01/2018 - 10:00 — admin
/ Careers	Authors: Maarit Widmann and Moritz Heine
/ Contact Us	Ever been skewed by the presence of outliers in your set of data? Anomalies, or outliers, can be a
/ Travel Information	serious issue when training machine learning algorithms or applying statistical techniques. They
/ KNIME Open Source Story	not describe the common functioning of the underlying system. Indeed, the best practice is to
/ Open for Innovation	implement an outlier removal phase before proceeding with further analysis.
	But hold on there! In some cases, outliers can give us information about localized anomalies in the whole system; so the detection of outliers is a valuable process because of the additional information they can provide about your dataset.
	There are many techniques to detect and optionally remove outliers from a dataset. In this blog post, we show an implementation in KNIME Analytics Platform of four of the most frequently used - traditional and novel - techniques for outlier detection.

https://www.knime.com/blog/four-techniques-for-outlier-detection

Data Preparation: Dimensionality Reduction

Is there such a thing as "too much data"?

"Too much data":

- Consumes storage space
- Eats up processing time
- Is difficult to visualize
- Inhibits ML algorithm performance
- Beware of the model: Garbage in \rightarrow Garbage out

Dimensionality Reduction Techniques

- Measure based
 - Ratio of missing values
 - Low variance
 - High Correlation
- Transformation based
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - t-SNE
- Machine Learning based
 - Random Forest of shallow trees
 - Neural auto-encoder

Missing Values Ratio

e "default" - P	Rower	40000 c		Columnau	121	Droportion	Elevy Variable	1									
Row ID		Var 16	fec ·	Var 17	1	Var 18	Flow variable	Var20	Var21	Var22	Var23	Var24	Var25	Var26	Var27	D Var28	1
Pow0		101 10	2	10117	<u>-</u>	10110	2	2	464	580	2	14	128	2	2	166.56	-
Row1	6		2		2		2	2	168	210	2	2	24	2	2	353 52	- î
Row2	6		2		2		2	2	1212	1515	2	26	816	2	2	220.08	-10
Pow4	6		2		2		2	2	64	80	2	4	64	2	2	200	+
Row7	5		2		2		2	2	32	40	2	2	16	2	2	230 56	+
Row8	5		2		2		2	2	200	250	2	2	64	2	2	300.32	+
Row10	5		2		2		2	2	92	115	2	6	112	2	2	133.12	+
Pow11	5		2		2		2	2	236	295	2	8	40	2	2	133.12	+
Row12	-		2		2		2	2	0	0	2	2	0	2	2	240.56	+
Row13	5		2		2		2	2	480	600	2	10	216	2	2	176.56	+
Pow14	5		2		2		2	2	148	185	2	0	8	2	2	236.08	+
Row16	5		2		2		2	2	584	730	2	6	320	2	2	220.08	+
Row17	5		2		2		2	2	168	210	2	2	320	2	2	166.56	+
Row18	5		2		2		2	2	12	15	2	2	0	2	2	253 52	+
Row20	5		2		2		2	2	168	210	2	2	56	2	2	272.08	+
Row21	5		2		2		2	2	20	25	2	2	0	2	2	86.96	+
Row22	2		2		2		2	2	192	240	2	2	80	2	2	166.56	+
Row23	2		2		2		2	2	52	65	2	0	56	2	2	198.88	+
Row24	2		2		2		2	2	216	270	2	8	128	2	2	200	+
Row25	2		2		2		2	2	152	190	2	4	16	2	2	20.08	+
Row26			0		0		0	2	2	2	2	2	2	2	2	20.00	+
Row20 Row28	-		2		2		2	r 3		0	2	2	0	2	2	257.29	+
Row20	-		2		:		2	r 3	312	390	2		120	2	2	200	+
Row30			2		2		2	2	112	140	2	4	56	2	2	166.56	+
Row31	-		2		:		2	r 3	28	35	2	0	16	2	2	295.2	+
Row31	-		2		:		2	r 3	160	200	2	4	40	2	> Mis	sing Value	+
Row35	-		2		2		2	r 3	612	765	2	14	360	2	2	200	+
Row37	-		2		2		2	2	380	475	2	4	208	2	2	336.56	+
Row38	-		2		2		2	2	76	95	2	0	16	2	2	213.36	+
Row40	-		2		2		2	2	228	285	2	22	56	2	2	200	+
Pow41	6		2		2		2	r 3	120	150	2	10	80	2	2	133.12	+
Pow47	6		5					r 3	2	2	2	2	2	2	2	2	+
Dow43	-		2		5		2	r 3	72	90	2	0	40	2	2	101.36	+
Dow44	-		2		2		2	r 3	0	0	2	2	0	2	2	120.4	+
Dow47	6		7		1		2	r	0	0	:	2	0	2	2	106.64	-
Row49	6		5		1		r 2	r	172	215	r 2	r 4	200	1	r 2	127.69	-
Rowho	-		-		1		r	1	1/2	213	r	-	200	r	r	137.08	+

Missing Value **Column Filter**

IF (% missing value > threshold)

THEN remove column

Low Variance

Hilita Na	instion	View								
	nyation	VIEW								
Die default -	Rows: 40	Spec -	Columns: 231	Properties Flow	Variables					
Row ID	20	Var21	Var22	Var23	Var24	Var25	Var26	Var27	D Var28	÷
Row51	n	336	420	0	8	72	0	0	133.12	_ ^
Row52	n	120	150	0	0	16	0	0	286.96	
Row54	n	124	155	0	0	0	0	0	234.72	_
Row55	n	184	230	0	4	64	0	0	642.64	_
Row56	n	268	335	0	4	88	0	0	133.12	_
Row57	n	128	160	0	0	96	0	0	198.88	_
Row59	n	132	165	0	0	112	0	0	253.52	_
Row60	n	44	55	0	0	24	0	0	186.64	_
Row61	n	104	130	0	4	72	0	0	166.56	_
Row62	h	212	265	0	6	136	0	0	379.6	_
Row63	h	20	25	0	0	0	0	0	166.56	_
Row65	n	492	615	0	18	256	0	0	133.12	_
Row66	n	148	185	0	2	8	0	0	186.64	_
Row68	n	140	175	0	2	40	0	0	176.56	_
Row69	h	0	0	0	0	0	0	0	166.56	_
Row71	n	0	0	0	0	0	0	0	392.08	_
Row72	n	124	155	0	6	88	0	0	153.2	_
Row73	h	152	190	0	0	32	0	0	253.52	_
Row74	n	324	405	0	8	104	0	0	186.64	_
Row75	n	0	0	0	0	0	0	0	0	_
Row76	n	60	75	0	6	0	0	0	200	_
Row77	n	180	225	0	4	88	0	0	166.56	_
Row78	n	232	290	0	4	144	0	0	200	_
Row79	n	16	20	0	0	16	0	0	313.68	_
Row81	n	152	190	0	0	48	0	0	220.08	_
Row82	h	108	135	0	4	88	0	0	166.56	- v

- If column has constant value (variance = 0), it contains no useful information
- In general: IF (variance < threshold) THEN remove column</p>

High Correlation

- Two highly correlated input variables probably carry similar information
- IF (corr(var1, var2) > threshold) => remove var1

Principal Component Analysis (PCA) (optional)

PCA is a statistical procedure that orthogonally transforms the original *n* coordinates of a data set into a new set of *n* coordinates, called principal components.

 $(PC_1, PC_2, \cdots PC_n) = PCA(X_1, X_2, \cdots X_n)$

- The first principal component PC_1 follows the direction (eigenvector) of the largest possible variance (largest eigenvalue of the covariance matrix) in the data.
- Each succeeding component PC_k follows the direction of the **next** largest possible variance under the constraint that it is orthogonal to (i.e., uncorrelated with) the preceding components $(PC_1, PC_2, \cdots PC_{k-1}).$

If you're still curious, there's LOTS of different ways to think about PCA: https://stats.stackexchange.com/questions/2691/making-sense-ofprincipal-component-analysis-eigenvectors-eigenvalues

Image from Wikipedia

Principal Component Analysis (PCA)

- *PC*₁ describes most of the variability in the data, *PC*₂ adds the next big contribution, and so on. In the end, the last PCs do not bring much more information to describe the data.
- Thus, to describe the data we could use only the top m < n (i.e., $PC_1, PC_2, \cdots PC_m$) components with little if any loss of information
- Caveats:
 - Results of PCA are quite difficult to interpret
 - Normalization required
 - Only effective on numeric columns

Dimensionality Reduction

Ensembles of Shallow Decision Trees

- Often used for classification, but can be used for feature selection too
- Generate a large number (we used 2000) of trees that are very shallow (2 levels, 3 sampled features)
- Calculate the statistics of candidates and selected features. The more often a feature is selected in such trees, the more likely it contains predictive information.
- Compare the same statistics with a forest of trees trained on a random dataset.

Data Preparation: Feature Selection

Feature Selection vs. Dimensionality Reduction

- Both methods are used for reducing the number of features in a dataset. However:
- Feature selection is simply selecting and excluding given features without changing them.
- Dimensionality reduction **might transform** the features into a lower dimension.
- Feature selection is often a somewhat more aggressive and more computationally expensive process.
 - Backward Feature Elimination
 - Forward Feature Construction

Backward Feature Elimination (greedy top-down)

- 1. First train one model on *n* input features
- 2. Then train *n* separate models each on n 1 input features and remove the feature whose removal produced the least disturbance
- 3. Then train n 1 separate models each on n 2 input features and remove the feature whose removal produced the least disturbance
- 4. And so on. Continue until desired maximum error rate on *training* data is reached.

Backward Feature Elimination

▲ Dialog - 0:344:0:347:3 - Feature Selection Filter (Do the final filtering here) File Column Selection Flow Variables ✓ Include static columns ○ Select features manually ● Select features automatically by score threshold Prediction score threshold 0.96 ♦ 0.977 16 0.977 16 0.977 16 0.968 17 0.965 12 0.965 14		node by ate ons - ation) for the orming el Maximize accuracy	reature Selection Filter D the final filtering here
0.965 12 0.965 10 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.965 9 0.963 24 0.963 24 0.963 24 0.963 24			Filter
0.96 44 0.96 40 0.96 40 0.96 37 0.96 32 0.96 23 0.96 23 0.96 14 0.96 3 0.96 14 0.96 3 0.96 3 0.96 50			
0.958 0.000 0.958 <td></td> <td></td> <td></td>			
0.958 21 V Va 155	OK Apply Cancel 🕐	1	

Forward Feature Construction (greedy bottom-up)

- 1. First, train *n* separate models on one single input feature and keep the feature that produces the best accuracy.
- 2. Then, train n 1 separate models on 2 input features, the selected one and one more. At the end keep the additional feature that produces the best accuracy.
- 3. And so on ... Continue until an acceptable error rate is reached.

Material

https://thenewstack.io/3-new-techniques-for-data-dimensionality-reduction-in-machine-learning/

Data Preparation: Feature Engineering

Feature Engineering: Motivation

Sometimes transforming the original data allows for better discrimination by ML algorithms.

Feature Engineering: Techniques

Coordinate Transformations Remember PCA and LDA? Polar coordinates, ...

- Distances to cluster centres, after data clustering
- Simple math transformations on single columns $(e^x, x^2, x^3, \tanh(x), \log(x), \ldots)$
- Combining together multiple columns in math functions $(f(x_1, x_2, \dots, x_n), x_2 - x_1, \dots)$
- The whole process is domain dependent

265

Exercises (optional)

- Clustering
 - Goal: Cluster location data from California
 - 01_Clustering_exercise

Data Preparation

- 02_Missing_Value_Handling_exercise
- 03_Outlier_Detection_exercise
- 04_Dimensionality_Reduction_exercise
- 05_Feature_Selection_exercise

- L4-ML Introduction to Machine Learning Algorithms
 - > The Session_1
 - > The Session_2
 - > The Session_3
 - Session_4
 - ✓ [™] 01_Exercises
 - ▲ 01_Clustering_exercise
 - ▲ 02_Missing_Value_Handling_exercise
 - ▲ 03_Outlier_Detection_exercise
 - ▲ 04_Dimensionality_Reduction_exercise
 - ▲ 05_Feature_Selection_exercise

- ▲ 01_Clustering_solution
- ▲ 02_Missing_Value_Handling_solution
- ▲ 03_Outlier_Detection_solution
- ▲ 04_Dimensionality_Reduction_solution
- ▲ 05_Feature_Selection_solution

Machine Learning Cheat Sheet

https://www.knime.com/sites/default/files/2021-07/CheatSheet_ML_A3.pdf

Confirmation of Attendance and Survey

 If you would like to get a "Confirmation of Attendance" please click on the link below*

Confirmation of Attendance and Survey

 The link also takes you to our course feedback survey. Filling it in is optional but highly appreciated!

Thank you!

*Please send your request within the next 3 days

Open for Innovation KNIME
L4-ML Online Course Feedback
Confirmation of Attendance
Request a confirmation of attendance by filling out this section:
Enter name to appear on "Confirmation of Attendance"
Enter email to receive "Confirmation of Attendance" Your answer
Back Submit

Thank You!

