H20.ai AutoML in KNIME for classification problems
a powerful auto-machine-learning framework (v 1.02)

https://forum.knime.com/u/mlauber71/summary

https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

kn_automl_h2o_classification_python

kn_automl_h2o_classification_r

Online article and discussion:

https://forum.knime.com/t/h20-ai-automl-in-knime-for-classification-
problems/20923?u=mlauber71

It features various models like Random Forest or XGBoost along with Deep Learning. It has
wrappers for R and Python but also could be used from KNIME. The results will be written to
a folder and the models will be stored in MOJO format to be used in KNIME (as well as on a
Big Data cluster via Sparkling Water).

One major parameter to set is the running time the model has to test various models and do
some hyper parameter optimization as well. The best model of each round is stored, and
some graphics are produced to see the results.

Results are interpreted thru various statistics and model characteristics are stored in and
Excel und TXT file as well as in PNG graphics you can easily re-use in presentations and to
give your winning models a visual inspection.

Also, you could use the Metanode “Model Quality Classification - Graphics” to evaluate
other binary classification models.

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Python and R in KNIME
(if you are using the R wrapper you can just skip the Python part)

In order for H20.ai to work you will have to install Python and the necessary packages:
h2o0, pandas, numpy, os, time, datetime, sys
optional: pyarrow

KNIME Python Integration Installation Guide
https://docs.knime.com/latest/python_installation_guide/index.html

Python and Anaconda and KNIME — the short story
https://forum.knime.com/t/problem-with-setting-a-python-deep-learning-
environment/19477/2?u=mlauber71

Downloading and installing H20
http://docs.h20.ai/h20/latest-stable/h20-docs/downloading.html

make sure you have the necessary Python packages installed

import numpy as np # linear algebra
import os # accessing directory structure
import pandas as pd # data processing, CSV file 1/0O (e.g. pd.read_csv)

print("pandas (pd) version: ", pd.__version__)
print("numpy (np) version", np.__version__)

http://strftime.org'
import time

import datetime as dt

conda install -c conda-forge pyarrow=0.15.1
import pyarrow.parquet as pq

pip install -f http://h20-release.s3.amazonaws.com/h2o/latest_stable_Py.html h20
import h2o

from pandas import ExcelWriter
from pandas import ExcelFile

import sys

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Install R alongside KNIME on Windows and MacOS

R and Rtools

RServe 1.8.6 on MacOSX

R packages needed:
ggplot2, lift, reshape2

If you use the R wrapper you will need the h2o package and the arrow package if you plan
on using the pure R script in the /script/ subfolder

http://docs.h20.ai/h20/latest-stable/h20-docs/downloading.html

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

ROC Curve and Gini coefficient

H20_AutoML_Classification_20200209_1345h - quality

1.0

_python

0.9

0.8

0.7

0.6

0.5

0.4

Sun Feb 09 13:55:34 CET 2020 - /hub/automl/kn_automl_h2o_dassification,

0.3

0.2

0.1

0.0
0.0 0.1 02 03 04 0.5 0.6 0.7 08 09 10

Norm. Gini 0,859 [AUC 0,93] | K-S 0,581 | Top Dec Lift 3,902 | Cross-Val StDv 0,19 [https://hub knime.com/miauber7 1/spaces/Public/latest/automl/]

A classic ROC (receiver operating characteristic) curve with statistics like Gini coefficient
measuring the ‘un-equality’ — which is what we want to maximize in this case

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

TOP Decile Lift

H20_AutoML_Classification_20200209_1345h - quality

4.0

_python

35

3.0

25

2.0

Sun Feb 09 13:55:34 CET 2020 - /hub/automl/kn_automl_h2o_dassification,

0.5

0.0
0 10 20 30 40 50 60 70 80 90 100

Norm. Gini 0,859 [AUC 0,93] | K-S 0,581 | Top Dec Lift 3,902 | Cross-Val StDv 0,19 [https://hub.knime.com/mlauber7 1/spaces/Public/latest/automl/]
® Lit ® Cumulative Lift Baseline

A classic lift curve with statistics. lllustrating how the TOP 10% of your score are doing
compared to the rest. You have the cumulative lift that ends in 1.0 (the green line *= the
average % of Targets in your population) and the Lift for each 10% step. This graphic and
statistics are useful if you want to put emphasis on the Top group.

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Kolmogorov-Smirnov Goodness-of-Fit Test

H20_AutoML_Classification_20200209_1345h - quality

= targst 0 — target_1

1.00

_python

..---------.--.--.--.-----------.--.---.

ECDF u. K-S Test - Sun Feb 09 13:55:34 CET 2020 - /hub/automl/kn_automl_h2o_classification

0.00¢

0.00 0.25 0.50 0.75 1.00
Norm. Gini: 0,859 | Kolmogorov-Smirnov-Test: 0,581 | Top Dec Lift: 3,902 | Cross-Val StDv 0,19 [hitpsZ//hub knime.com/mlauber71/spaces/Public/latest/automl/]

two curves illustrating the Kolmogorov-Smirnov Goodness-of-Fit Test. An indication about
how good the two groups have been separated. The higher the better. Also inspect the
curves visually.

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Find the best cut-off point for your model

H20_AutoML_Classification_20200209_1345h - quality (x= Score value, y= % of cases)

Recall == pct_non_targets_vs_all

_python

1.004

0.75

0.501

0.25 4

\

0.00 0.25 0.50 0.75 1.00
Normalized Gini: 0,859 | Top Decile Lift: 3,902 | best cutoff >0,39 | best Cohen's Kappa: 0,642 [best F1 Score: 0,73 - F1 cutoff >0,31]

0.004

best cutoff - Sun Feb 09 13:55:34 CET 2020 - /hub/automi/kn_automl_h20_classification

Gives you the idea where the best cutoff might be by consulting two measures
- >0.39 score if you follow Cohen’s Kappa
- >0.31if you follow the best F1 score

There is always a price to pay. The blue curve gives you the % of non-targets with regards to
all cases that you would have to carry with you if you choose this specific cutoff

If you choose >0.39 you will capture 74% of all your targets. You will have to ‘carry’ 7% off
all your cases that are non-Targets which overall make 67% of your population.

If you choose a cutoff of >0.68 you get nearly 50% of your Targets with only about 2% of the
population as non-Targets. If this is good or bad for your business case you would have to

decide. For more details see the Excel file.

https://en.wikipedia.org/wiki/Precision and recall

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

The accompanying Excel file also holds some interesting information

The Leaderboard from the set of models run

model_id I auc logloss aucpr l _per_class, rmse mse
GBM_1_AutoML_20200209_134514 0,925952 0,281633 0,806913 0,179058 0,298255 0,088956

1 DRF_1_AutoML_20200209_134514 0,913631 0,315944 0,764041 0,184507 0,309066 0,095522
2 GLM_1_AutoML_20200209_134514 0,905259 0,320347 0,738104 0,197592 0,319713 0,102216

It gives you an idea
e Which types of models were considered?
e Also, the stretch of the AUC could be quite wide. Since all the models only trained 2.5
minutes it would be possible that further training time might result in better models
e In between there as some other models besides GBM if they would appear more
often you might also investigate that further

If you are into tweaking, you models further the model summary also gives you the
parameters used.

| |number_of_trees number_of_internal_trees model_size_in_bytes|min_depth max_depth | mean_depth | min_leaves [max_leaves | mean_leaves
0 100 100 82263 6 6 6 42 64 57,55

Further information will be stored in the print of the whole model with all parameters, also
about the cross-validations done.

[oK H20_AutoML_Classification_20200209 1345h.txt

MSE: 0.07594983710496706

RMSE: ©.27558998005182817

LogLoss: 0.2439220731412011

Mean Per-Class Error: 0.1303064492922299
AUC: 0.9476788592324248

AUCPR: 0.8561080375372859

Gini: 0.8953577184648496

Confusion Matrix (Act/Pred) for max f1 @ threshold = 0.3919679260528399:
[] 1 Error Rate
) 24002 2027 0.0779 (2027.0/26029.0)
3 6387 0.2173 (1773.0/8160.0)
Total 25775 8414 0.1111 (3800.0/34189.0)

Maximum Metrics: Maximum metrics at their respective thresholds
idx

metric threshold value
max 1 0.391968 0.770725 200
max f2 0.193525 0.836376 277
max fopoints 0.588931 0.809477 134
max accuracy 0.466213 0.891954 173
max precision 0.994328 1 [}
max recall 0.00324808 1 397
max specificity 0.994328 1 0
max absolute_mcc 0.404031 0.697877 196
max min_per_class_accuracy 0.283703 0.86807 239
max mean_per_class_accuracy 0.24332 0.869694 255
max tns 0.994328 26029]
max fns 0.994328 8043 0
max fps 0.0021123 26029 399
max tps 0.00324808 8160 397
max tnr. 0.994328 1 0
max fr 0.994328 0.985662 0
max fpr 0.0021123 1 399
max tpr 0.00324808 1 397
Gains/Lift Table: Avg response rate: 23,87 %, ayg score: 23,88 %

roup cumulative_data_fraction lower_threshold lift cumulative_lift response_rate score cumulative_response_rate
cumulative_score capture_rate cumulative_capture_rate gain cumulative_gain

1 0.0100032 0.992006 4.18983 4.18983 1 0.993241 1
0.993241 0.0419118 0.0419118 318.983 318.983

0.0200064 0.989704 4.18983 4.18983 1 0.990936 1

0.992088 0.0419118 0.0838235 318.983 318.983

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Variable Importance is very important

Then there is the variable importance list. You should study that list carefully. If one variable
captures all the importance you might have a leak. And the variables also should make
sense.

If you have a very large list and further down, they stop making sense you could cut them off
(besides all the data preparation magic you could do with vtreat, featuretools, tsfresh, label
encoding and so on). And also, H20 does some modifications.

variable | relative_importance |scaled_importance | percentage |
0 relationship 4.123,79 1,00 25%
1 capital-gain 2.997,02 0,73 18%
2 marital-status 2.182,30 0,53 13%
3 occupation 1.659,41 0,40 10%
4 education 1.443,28 0,35 9%
5 education-num 1.040,61 0,25 6%
6 age 903,85 0,22 5%
7 capital-loss 895,13 0,22 5%
8 hours-per-week 525,65 0,13 3%
9 native-country 390,08 0,09 2%
10 workclass 261,75 0,06 2%
11 fnlwgt 186,25 0,05 1%
12 sex 38,84 0,01 0%
13 race 37,13 0,01 0%

You could use that list to shrink your y variables and re-run the model. The list of
variables is also stored in the overall list.

Fun fact in this case: your relationship and marital status is more important to
determine whether you will earn more than $50,000 then your education ...

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Get an overview how your model is doing in Bins and numbers

submission solution_1 solution_0 sum_overall percent_target_1 col_percent_1 col_percent_overall information

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

71
185
251
281
289
280
324
344
449
238
815

6.459
1.930
877
610
443
293
213
174
108
15

4

6.530
2.115
1.128
891
732
573
537
518
557
253
819

1%

9%
22%
32%
39%
49%
60%
66%
81%
94%

100%

2%
5%
7%
8%
8%
8%
9%
10%
13%
7%
23%

45%
14%
8%
6%
5%
4%
4%
4%
4%
2%
6% an excellent group, nearly all Target=1 and representing 23% of all your Targets
H20_AutoML_Classification_20200209_1345h - quality
Sun Feb 09 13:55:34 CET 2020 - /hub/automl/kn_automl_h2o_classification_python
Norm. Gini 0,859 [AUC0,93] | K-S0,581 | Top Dec Lift 3,902 | Cross-Val StDv 0,19 [htt}

| like this sort of table since it gives you an idea about what a cut-off at a certain score
(“submission”) would mean.

All numbers are taken from the test/validation group (30% of your population in this case) —
you might have to think about your overall population to get the exact proportion.

0,7
0,8
0,9

344
449
238
815

174
108
15

518
557
253
819

66% 10% 4%
81% 13% 4%
94% 7% 2%
100% 23% 6% :
]
of all Target=1 i 43% $
no Target=1 r 1.502 92%)
no Target=0 d 127

If you choose a cutoff at 0.8 you would get 92% precision and 43% of all your desired targets.
In marketing/cross-selling that would be an excellent result. In credit scoring you might not
want to live with 8% of people not paying back their loan. So again, the cut-off and value of
you model very much depends on your business question.

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

A word about cross-validation

Another aspect of your model quality and stability could be judged by looking at a cross-
validation. Although H20 for example does a lot of that by default in order to avoid
overfitting you might want to do some checks of your own.

The basic idea is: if your model is really catching a general trend and has good rules they
should work on all (random) sub-populations and you would expect the model to be quite
stable.

k_fold colStdevs(final_result) names NormalizedGini_oneout TopDecileLift_oneout NormalizedGini_subsample TopDecileLift_subsample ir
0 0,004149659 NormalizedGini_oneout
0 0,029743907 TopDecileLift_oneout
0 0,016393696 NormalizedGini_subsample
0 0,139740116 TopDecileLift_subsample
1 0,858393581 3,888 0,863299665 3,946
2 0,854403843 3,949 0,878223246 3,661
3 0,856796462 3,895 0,869162145 3,916
4 0,862399609 3,871 0,847015003 4,033
5 0,864611463 3,888 0,838019366 3,931
-1 0,190027378 <=cumulative stdv cross validation; 0 =most stable model

Several tests are run. In the end we look at a combined standard deviation. 0 would
represent a perfect match between all subgroups (sub-sampling and leaving one out
techniques). So if you would have to choose between several excellent model you might
want to consider the one with the least deviation.

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

Jupyter notebook

Enclosed in the workflow in the subfolder
/script/ kn_automl_h2o_classification_python.ipynb

there is a walkthrough of Automl in a Jupyter notebook to explore the functions further and
if you do not wish to use the wrapper with KNIME

: Ju pyter kn_automl_h2o_classification_python Last Checkpoint: vor 2 Minuten (autosaved) a Logout

File Edit View Insert Cell Kernel Widgets Help Trusted ‘ Python3 O

«~
B

B+ x & B 4 ¢ MRin B C » Code

H20.ai AutoML in KNIME for classification problems
a powerful auto-machine-learning framework wrapped with KNIME
https://hub.knime.com/mlauber71/spaces/Public/latest/automl|/

https://forum.knime.com/u/mlauber71/summary

In [1]: kn_example_h2o_automl_regression_python
Copy input to output

wport numpy as np # linear algebra
nport os # accessing directory structure
wport pandas as pd # data processing, CSV file I/0 (e.g. pd.read_csv)

http://strftime.org'

iport time

ir_timestamp_day = "{}".format(time.strftime("%Y%m%d"))
flow_variables['var_timestamp_day'] = var_timestamp_day
“int("var_timestamp_day: ", var_timestamp_day)

H20.ai AutoML in KNIME for classification problems
https://hub.knime.com/mlauber71/spaces/Public/latest/automl/

