
KNIME XML Generation Components  November 2022   -   @takbb 1 
 

KNIME XML Generation Components 

A quick guide to the (experimental) 
 XML Generation “toolkit” by @takbb 

doc version: v1 - 04 Nov 2022 

Background and History 
Generating XML is something that a lot of us find ourselves doing from time to time. With the 
prevalence of other data formats, XML is perhaps somewhat less popular than it once was but still 
there is still the need to be able to generate it and I have personally found it challenging to find a quick 
and easy way to generate it. In theory it ought to be straightforward but unlike tabular data, XML is 
structured and so some additional effort will always be required to generate it. 

Many relational databases do provide a means for generating XML directly from SQL queries, but these 
often require a special syntax that is not standard across platforms and is not straight-forward. 
Sometimes the data is not in a relational database at all, and we do not have the time to go learning 
a whole new syntax for that one-off or very occasional task?  

A tool such as KNIME allows us to think about tabular data without necessarily requiring an in-depth 
knowledge of the data source or even the destination format. I can write Excel spreadsheets without 
any knowledge whatsoever of the inner workings of XLSX files (which ironically are really XML plus a 
few bells and whistles wrapped in a ZIP file) or write to CSV without having to worry about embedding 
the delimiters or the quotation marks. It therefore makes sense that we should be able to generate 
XML without requiring vast knowledge of the workings of XML format itself.  

A few years ago, before I discovered KNIME, I needed to be able to create XML files out of a database, 
and being a JAVA developer, I wanted my solution to be portable so that it would work with any 
relational database that I could connect to through JDBC. I wrote a small JAVA application for my own 
use that I configured using a “properties” file. It mostly worked for the XML I needed to create and 
occasionally I would need to tweak it a little where I required greater functionality. 

Back in mid-2021, having discovered KNIME, I had a need to generate some XML and I found myself 
going down the same path of trying to find a “simple” (abstracted) solution. I looked at the facilities 
that KNIME offered for creating XML, and read some tutorials and examples, but the same thoughts 
from a few years earlier came back to me; I really didn’t want to be hand-crafting the XML creation 
for every piece of new XML I had to generate. I found I was spending too much time with the “node-
per-xml-element” route or having to think about how KNIME was generating the XML whereas what I 
really wanted to do was say “here is the data. Here is the structure I want…make it so”. I’m lazy and 
get bored easily when it comes to mundane tasks; I want to just “crank the handle” and move on. 

So, I investigated the possibility of porting my old java application into KNIME. At first, I considered 
Java Snippets but soon realised that python was the better solution because with python snippets you 
have access to the entire data table in one go, whereas Java Snippets work on a one-row-at-a-time 
basis which wasn’t really compatible with what I wanted.  

The downside of using python is that it means it isn’t a totally “out of the box” solution, but it greatly 
simplified the implementation, and I considered it a price worth paying. As it turned out, I didn’t 
actually port the java code into python. I ported the idea of how it worked and wrote it from scratch. 
Over time I have added some refinements. This is the result! Enjoy  সহ঺঻ 

  



KNIME XML Generation Components  November 2022   -   @takbb 2 
 

 

What are the XML Generation Components? 
 

The XML Generation Components started off life as a Table Creator Node and a python script. The 
Table Creator node was where I entered the “properties” describing the xml to be built, and the 
python script acted on it. After some experimentation, the python script became the XML Generator 
component, and the Table Creator took on a life of its own, being replaced by several components 
written to help create the “Control Table”, and to help modify it. 

The “XML Control Table” is what I call the repository of configuration information that is used to 
describe the XML structure in simple, easy-to-process terms, and maps the XML elements to the 
different data items on the input data table. 

Before getting into the detail of HOW the components work, I thought I’d take time to introduce them. 
I may modify these or add others in future as I discover shortcomings.  

A word of warning though. These are “experimental”. What this means is that I have put them together and tested them 
on a very limited set of sample data. They have worked for the tests I have done with them, but my time is limited and there 
may be situations where they don’t work as expected. You are welcome to use them, but please… please… make sure you 
test that they are doing what you expect, and need. If you discover any bugs or have suggestions for improvement, please 
let me know on the KNIME Community Forum. 

The XML Generator is ultimately the “brains” behind the whole operation. It 
takes two inputs. On the upper port is the table from which it will source the 
data that is to be turned into XML. 

The lower input port is the Control Table that it will use as the “instructions” 
for how to do it. 

The upper output is the generated xml as an xml data type. 

The lower output port is xml generated on a per-row basis as a String data type. 

 

The Create XML Generator Control Table component was the first 
component written to replace the original manually configured 
“Table Creator”. Its purpose is to take away some of the pain of 
supplying the Control Table. It cannot take away all the manual 
effort though. It isn’t a mind-reader  ͧͪͩͨ 

What it does is generate a basic xml control table for a give input 
data table. So, it reads in a data source and outputs a control table. 

In its most basic usage, as pictured here, this will generate basic XML. But unless basic row-level XML 
is what you are after, it is just the starting point. 

 

 

 

 

 

 

 

 

 
  



KNIME XML Generation Components  November 2022   -   @takbb 3 
 

The Create XML Generator Control Table from XSD component 
takes the alternative approach to building the initial Control Table. 
It attempts to use an XSD instead of the raw data to generate the 
Control Table. Unlike the basic Generator though, it knows nothing 
about the actual data table and so requires an additional manual 
step to tie the data to the control table before it can be used to 
generate XML.  

 

The most basic workflow to generate XML with this component is as follows: 

 

Once again though, there may be additional items that you would wish to configure although because 
this has used the XSD, it understands the required structure and so “out of the box” the above 
configuration will give a more advanced xml output than the basic xml generated using the “Create 
XML Generator Control Table” component. 

There are two output ports on this component. The upper port is the Control Table that should be 
passed onto the next XML Generation component. 

The lower port is an output of the “tag” entries created by this component. It is anticipated that this 
component should be followed by an Override XML Generator Control Table component which takes 
as its second input a partial control table (usually from a Table Creator as shown above). 

To assist with populating this Table Creator, the lower port of the Control Table from XSD component 
supplies the starting point for the data for this Table Creator component: 

1. View the output from this and copy and paste it into a Table Creator. Then modify the value column 
(third column) accordingly. There is no need to change the names of this table as the Override XML 
Generator Control Table works positionally rather than by column title, to reduce the effort required. 
As a convenience, the first row of the table produced by the Create XML Generator Control Table 
contains the pseudo-column titles for easy reference, and these can remain as they are ignored by the 
downstream XML Generation components. 

 

 



KNIME XML Generation Components  November 2022   -   @takbb 4 
 

The Create XML Generator Data Map Table from XML parses a data 
mapping XML document and from it generates the data mapping portion 
of the Control Table. The data mapping control table is the “tag” rows of 
the control table which define, for each tag, the name of the data item in 
the input data table that is to be used to source the data for the given 
element or attribute. 

This XML document takes the following form: 

<ROOT_ELEMENT>  
  <ELEMENT_1>  
     <ELEMENT_2>DATA_NAME_FOR_ELEMENT_2</ELEMENT>  
     <ELEMENT_3>  
          <ELEMENT_4>DATA_NAME_FOR_ELEMENT_4</ELEMENT>  
          <ELEMENT_5>DATA_NAME_FOR_ELEMENT_5</ELEMENT>  
     </ELEMENT_3>  
   </ELEMENT_1>  
</ROOT_ELEMENT> 

 

And from this would generate the following control table: 
Option Key Value 
tag ELEMENT_2 DATA_NAME_FOR_ELEMENT_2 
tag ELEMENT_4 DATA_NAME_FOR_ELEMENT_4 
tag ELEMENT_5 DATA_NAME_FOR_ELEMENT_5 

 
Note that no tags are created for elements that have no data items. Those tags will be required, but 
it is expected that they will be generated by the Create XML Generator Control Table from XSD 
component.  
 
Data names may be optionally enclosed within $ symbols.  
e.g. 
 
<ELEMENT_2>$DATA_NAME_FOR_ELEMENT_2$</ELEMENT>  
 

 These $ symbols will be removed and play no part in the name of the data item.  



KNIME XML Generation Components  November 2022   -   @takbb 5 
 

The Override XML Generator Control Table is, in reality, a glorified 
Concatenate Node. It does a bit more than that, but in essence this 
is what it does.  

The upper input is the control table that has been generated using 
one of the Control Table generator or modification nodes.  

The lower input is a manually edited control table containing the 
changes that are required. Typically, such changes are supplied via 

a manually edited Table Creator and contain the “data mappings” of XML Elements (known as “tags”) 
to their data items. 

A “tag” is a term used here to represent a control table “artefact” which represents an XML item to 
be output: a grouping element, data element or attribute. 

The output from this component is simply an updated control table. You will see this component 
commonly used with the Create XML Generator Control Table from XSD component as follows: 

 

 

 

 

 

 

 

 

 

 



KNIME XML Generation Components  November 2022   -   @takbb 6 
 

The Define XML Tag component is used, as you may have guessed to define 
(create) a new “Tag”. A tag is an item that will be used to define an XML Group 
Element, XML Element or an XML Attribute. 

For this component to function, it requires the presence of a flow variable 
created by the Create XML Generator Control Table which lists the different 
data table columns from the input data source. 

As such, the Define XML Tag component cannot be used if the control table has been created just with 
the Create XML Generator Control Table from XSD as its purpose is to allow the manual creation of 
new tags that are based on data items in a situation where there is no XSD.  

This makes sense if the purpose of generating the XML is to match the XSD as in this situation you 
would not expect to be creating tags for elements that aren’t in the XSD.  

However, if you are perhaps using the XSD merely as a starting point and have additional data items 
to be added from a separate data table, this can be achieved by manually creating a flow variable 
named “xml-gen-query-col-list" as a (String Array) upstream of this component.  

This flow variable should contain the names of all the data columns for which you are 
generating the XML. This could be done also be achieved by using my “Column Headings 
to Array Variable” component available on the KNIME HUB.  

Connect the data table to the input data port and connect the output flow variable port 
to the Define XML Tag component. Configure it to create a variable called xml-gen-query-col-list and 
all should be good, as per this example: 

 

You will notice that there are two output ports on the Define XML Tag component. The upper port is 
the modified Control Table to be passed downstream to the next XML Generation component. The 
lower port is purely for information (or curiosity) and shows some details of the Control Table entries 
that have been created by this component. Do not rely on this lower port giving any specific format, 
as it may change in future, and is really there for debugging purposes. 

 

The Modify XML Tags component is used to make a change to one or more 
existing tags. It is also used to delete tags which may be necessary sometimes 
if, for example, the Table Creation components automatically create tags 
from the data source, or XSD, but you don’t actually want these to generate 
elements in the resultant XML. 

 

 

 



KNIME XML Generation Components  November 2022   -   @takbb 7 
 

The Change Parent XML Tag component is used to move tags from one “parent” 
element to another within the XML hierarchy. 

This component does not allow you to specify the individual tags to be moved, 
but instead moves all tags that are currently “children” of one element, so that 
they become children of a different element. This may be necessary where, for 
example, the control table has been created based on a data source, but we are 
manually creating the necessary hierarchy “groupings” and wish to move tags 

together to a new group in the hierarchy.  

 

The Change Specific Parent XML Tag component is used to move a defined tag 
or set of tags from one “parent” element to another within the XML hierarchy. 
This gives finer control than the Change Parent XML Tag component and will be 
more likely used once the hierarchy has generally been configured but there are 
some “fine tuning” adjustments to be done. For bulk moving, though, where 
you don’t want to have to look to find all the “children” of an element, the 
Change Parent XML Tag can be more convenient. 

 

The XML Control Table - Finalizer component is the component to be placed 
just before the XML Generator component. When generating the Control Table, 
and performing the various configuration steps, there are features of the 
control table that need to be set in a certain way or else the generator doesn’t 
give the expected results.  

When developing the components, I commonly found that a few things would 
not be “quite right” when it came to the XML generation, and I eventually realised that it would be 
better to have a “finalizer” that checked for common issues and corrected them rather than try to 
explain all the inner workings, and waste time trying to remember them. 

So, if you find the xml generator isn’t outputting correctly, try adding the Finalizer.  

It is recommended anyway that the finalizer always be present, as over time, it might add additional 
tweaks to ensure newly functionality works with older control tables, should changes be necessary. 

 The finalizer also does a little housekeeping such as removing row duplication in the control table that 
may have occurred through manual editing or concatenation.  

 

 The XML Control Table Renderer component is not strictly a necessary 
component for generating XML. It does not make changes to the control table 
and its presence in a workflow will not affect XML generation.  

What it does though is assist with manual debugging of the control table. 

The input port is the control table, and the upper output port is the same 
control table passed through unchanged, so you can leave it attached in a flow 
without it breaking anything. 

The lower data port, though, is there for debugging and is a “hierarchy” generated from the control 
table to show how the XML generator will “perceive” the XML to be generated. If you view the output 
of the second data port, you might, for example, notice that elements are missing, and you can resolve 
many issues quickly without running the full generation. This lower port is purely for manual 
“observation”, and you should not assume it is in any particular format for processing, as it may be 
updated in future versions. 

 

The Set Group Parent Identifier XML Tag node allows you to specify the 
identifying tag of a group tag’s parent. This allows repetition of items within the 
group until such time as the group’s parent changes. This component generates 
“breakonchange” tags. 

  



KNIME XML Generation Components  November 2022   -   @takbb 8 
 

So that ends the quick tour of the components and hopefully gives a flavour for how they interact and 
their purpose.  

Some of the components have configuration options, but many do not. Please read the component 
help built into each component for assistance with configuration. 

The primary configuration for the XML generation as a whole though is the “Control Table”, and this 
is discussed in the next section. 

The XML Control Table 
The configuration of the XML Generator is held in what is called “The XML Control Table”. This is 
effectively a registry of the properties that define the XML to be generated. Every line consists of 3 
active properties, “Option”, “Key” and “Value”.  There may be other columns to the right, such as 
“Comment” and “Additional Notes” but these are there purely for information purposes and are not 
processed by the XML Generator or other components. 

The Control table is effectively the “language” of the XML Generator. The “Option” is similar to a 
command, or instruction. They Key is typically the name of a tag, and a Data Item name, another tag 
name or a value to be used by the Generator to fulfil the stated instruction. 

e.g. This is the first few lines of the control table 

OPTION KEY VALUE COMMENT 

header Root SURVEY_RESULTS 

specify the root data 
element 

Only the Value should be 
changed 

header Row record 

specify the element name 
at row level 

This should not be changed 

header RowGroup row_group 

specifies the tag name for 
the Row 

This should not be changed 

display row_group PERSON 

The display name for each 
“row” 

Only the value should be 
changed 

parent row_group record 
The top level parent 

This should not be changed 

tag_type row_group group 
defines top level grouping 

This should not be changed 

   

The “header” options are not generally used other than as the first three instructions and they are 
created by the Control Table Generator. They define internal information used by the Generator.  

These options define the “Root”, the “Row” and the “RowGroup” which are special items required 
internally for the generator to operate, it requires that XML follow a basic hierarchical structure with 
a single “root” node, and then have each “row” or “record” contained within a “grouping” node. This 
grouping node is defined as the “row_group” tag. 

  



KNIME XML Generation Components  November 2022   -   @takbb 9 
 

Special “internal” values in the Control Table 

option key Notes on usage 

header Root The value of this defines the name of the “root tag” which will define 
the first XML element to be output. This is user-changeable. 

header Row This is always set to “record” and should not be changed 

header RowGroup This is always set to “row_group” and should not be changed. 

“row_group” is the internal name for a tag that groups every “row” 
that is to be output in the XML. 

display row_group The value of this line defines the XML ELEMENT name that will be 
output for the row_group. This value is user-changeable. 

parent row_group This is always set to “record” and should not be changed. This tells the 
generator that the “row_group” tag is a child of the internal “record”. 

tag_type row_group This is always set to “group” and should not be changed. It tells the 
generator that row_group is an XML Grouping element 

 

All other values are configurable by the user. All option and key names are case-sensitive. 

Primary Control Table Options 

option key Notes on usage 

tag tagname The value of this defines the case-sensitive name of the data 
item (column name) in the input data that will be used to provide 
a value for the XML element or attribute when it is output. 
If no data item is associated with the tag, it should be given a 
value beginning # which will then be ignored by the generator. 
The tagname given here must be unique. It will be used as the 
internal name for the tag and may be referenced by other 
options in the Control file. If you have multiple XML elements 
that require the same output name, ensure they each have 
different (unique) tagnames, but give them the same “display” 
value. 

display tagname The value of this defines the name given to the element or 
attribute when it is output in the xml. So if an element tag is 
given a display value of PERSON, the resultant element would be 
output as <PERSON>  
This is case sensitive, and you must ensure the value given 
conforms to XML naming standards for elements or attributes. 

tag_type tagname This takes one of the following values which defines the type of 
output produced: 
element  – the resultant output will be an XML Element, e.g.  
<PERSON> 
group – the resultant output will be an XML Element that groups 
one or more other XML Elements 
attribute – the resultant output will be an attribute on the parent 
XML Element 

parent tagname The value given will be the name of another tag which will be 
defined as the immediate ancestor of this tag when the XML is 
generated. 



KNIME XML Generation Components  November 2022   -   @takbb 10 
 

Additional Control Table Options 

The remaining options/instructions are not always necessary and are designed to change the 
behaviour of a given tag during generation 

option key Notes on usage 

breakonchange tagname 

The purpose of this option is to define the circumstances under 
which a “group” element should “close” in the xml and then 
“reopen” as a new group. 

The value is the name of another tag that is to be monitored for a 
change of value. When the value changes, the grouping element 
will close and reopen as a new group. Typically the identifying 
element is the ID of the “parent” of this group. So in a list of 
employees, it might be the ID of the department so that then all 
employees in the same department will be listed together. For this 
to work, the data set must be sorted prior to calling the XML 
Generator so that “grouped rows” occur contiguously. 

ifblank tagname The value to be output if the value of the tag is blank. 

ifmissing tagname The value to be output if the value of the tag is missing. 

ifzero tagname The value to be output if the value of the tag is zero. 

rowcounter tagname 

Not yet implemented. May be implemented in future. 

This would generate a row counter for each item output. 

A close approximation to this functionality could be achieved in 
KNIME, add a row counter into the source data and creating a tag 
for it in the Control Table. 

numeric tagname If Y, defines that the resultant output is a numeric 

integer tagname If Y, defines that the resultant output is an integer 

hideifmissing tagname If set to Y, this suppresses output of the element or attribute in the 
XML if the value is missing 

hideifblank tagname If set to Y, this suppresses output of the element or attribute in the 
XML if the value is blank 

comment tagname 

Supply a value of “#”. This makes the tag into a “comment”. This 
will generate a comment in the XML which does not represent any 
data value to be processed. Useful for debugging, such as inserting 
source ID values into the resultant data A. 

To include the value of one or more other tags in the comment, 
place the tagname(s) in curly braces: 

e.g  

This is the current value of person_id: {person_id}  

literal tagname 

Not yet implemented. May be implemented in future 

Makes the tag a “literal” value, so the same value will be output on 
every occurrence. The “value” to be entered for this option is the 
value that is to be output.  

If this functionality is required, in KNIME, add a literal value to the 
input data source. 

Note that both the option names and tag names are case-sensitive 

  



KNIME XML Generation Components  November 2022   -   @takbb 11 
 

Output order of elements 

When the XML Generator generates the XML, it navigates the Root tag, then the row_group tag, and 
then traverses the “parent” hierarchy in the order in which tags are added to their parents. Therefore, 
the output order of the XML elements is defined by the order in which the “parent” options appear in 
the control file. To make a element A appear before element B, ensure that in the Control Table, that 
element A’s parent tag appears before element B’s parent tag. 

 

Comments and Feedback 
This “toolkit” of components for XML Generation is a “work in progress”, and as such please fully test 
that it works for you. I am aware that there is some functional improvements that could be made over 
time, and I cannot be certain that it will work for all situations as whilst there are a wide variety of 
scenarios, this generator cannot necessarily deal with all of them. 

Feedback and suggestions are welcome. If you find that it doesn’t work for your scenario, then please 
contact me @takbb on the Hub section of the KNIME community forum. 

I would also be pleased to hear of any successes with using it, as it is real-world scenarios that motivate 
me to continue working on it. 

I would also greatly appreciate it if you were able to publish sample workflows using these 
components as this will both take the burden off me for providing demonstration workflows, and 
potentially assist others with theirs. 

Thank you!  
takbb 

November 2022 

 

 


